| [1] |
Wen X, Yuan J, Bozorov TA, Waheed A, Kahar G, et al. 2023. An efficient screening system of disease-resistant genes from wild apple, Malus sieversii in response to Valsa mali pathogenic fungus. Plant Methods 19(1):138 doi: 10.1186/s13007-023-01115-w |
| [2] |
Zhang YY, Yan JM, Zhou XB, Zhang YM, Tao Y. 2023. Effects of N and P additions on twig traits of wild apple (Malus sieversii) saplings. BMC Plant Biology 23(1):257 doi: 10.1186/s12870-023-04245-4 |
| [3] |
Finkelstein RR, Gampala SSL, Rock CD. 2002. Abscisic acid signaling in seeds and seedlings. The Plant Cell 14:S15−S45 doi: 10.1105/tpc.010441 |
| [4] |
Nishimura N, Tsuchiya W, Moresco JJ, Hayashi Y, Satoh K, et al. 2018. Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme. Nature Communications 9(1):2132 doi: 10.1038/s41467-018-04437-9 |
| [5] |
Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe WJJ. 2012. Molecular mechanisms of seed dormancy. Plant, Cell & Environment 35(10):1769−86 doi: 10.1111/j.1365-3040.2012.02542.x |
| [6] |
Lee HG, Lee K, Seo PJ. 2015. The Arabidopsis MYB96 transcription factor plays a role in seed dormancy. Plant Molecular Biology 87:371−81 doi: 10.1007/s11103-015-0283-4 |
| [7] |
Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M, Sotta B, et al. 2004. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219(3):479−88 doi: 10.1007/s00425-004-1251-4 |
| [8] |
Shu K, Liu XD, Xie Q, He ZH. 2016. Two faces of one seed: hormonal regulation of dormancy and germination. Molecular Plant 9(1):34−45 doi: 10.1016/j.molp.2015.08.010 |
| [9] |
Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, et al. 2009. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324(5930):1064−68 doi: 10.1126/science.1172408 |
| [10] |
Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, et al. 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324(5930):1068−71 doi: 10.1126/science.1173041 |
| [11] |
Nakashima K, Yamaguchi-Shinozaki K. 2013. ABA signaling in stress-response and seed development. Plant Cell Reports 32(7):959−70 doi: 10.1007/s00299-013-1418-1 |
| [12] |
Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J. 2002. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. The Plant Cell 14(12):3089−99 doi: 10.1105/tpc.007906 |
| [13] |
Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, et al. 2006. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. Journal of Biological Chemistry 281(8):5310−18 doi: 10.1074/jbc.M509820200 |
| [14] |
Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, et al. 2009. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 106(41):17588−93 doi: 10.1073/pnas.0907095106 |
| [15] |
Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, et al. 2009. Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. The Plant Journal 60(4):575−88 doi: 10.1111/j.1365-313X.2009.03981.x |
| [16] |
Fujii H, Verslues PE, Zhu JK. 2007. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. The Plant Cell 19(2):485−94 doi: 10.1105/tpc.106.048538 |
| [17] |
Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, et al. 2009. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant and Cell Physiology 50(12):2123−32 doi: 10.1093/pcp/pcp147 |
| [18] |
Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, et al. 2010. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. The Plant Journal 61(4):672−85 doi: 10.1111/j.1365-313X.2009.04092.x |
| [19] |
Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, et al. 2017. Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Frontiers in Plant Science 8:161 doi: 10.3389/fpls.2017.00161 |
| [20] |
Zhao H, Nie K, Zhou H, Yan X, Zhan Q, et al. 2020. ABI5 modulates seed germination via feedback regulation of the expression of the PYR/PYL/RCAR ABA receptor genes. New Phytologist 228(2):596−608 doi: 10.1111/nph.16713 |
| [21] |
Finkelstein RR. 1994. Mutations at two new Arabidopsis ABA response loci are similar to the abi3 mutations. The Plant Journal 5(6):765−71 doi: 10.1046/j.1365-313X.1994.5060765.x |
| [22] |
Finkelstein R, Reeves W, Ariizumi T, Steber C. 2008. Molecular aspects of seed dormancy. Annual Review of Plant Biology 59:387−415 doi: 10.1146/annurev.arplant.59.032607.092740 |
| [23] |
Irigoyen ML, Iniesto E, Rodriguez L, Puga MI, Yanagawa Y, et al. 2014. Targeted degradation of abscisic acid receptors is mediated by the ubiquitin ligase substrate adaptor DDA1 in Arabidopsis. The Plant Cell 26(2):712−28 doi: 10.1105/tpc.113.122234 |
| [24] |
Chen HH, Qu L, Xu ZH, Zhu JK, Xue HW. 2018. EL1-like casein kinases suppress ABA signaling and responses by phosphorylating and destabilizing the ABA receptors PYR/PYLs in Arabidopsis. Molecular Plant 11(5):706−19 doi: 10.1016/j.molp.2018.02.012 |
| [25] |
Wang Z, Ren Z, Cheng C, Wang T, Ji H, et al. 2020. Counteraction of ABA-mediated inhibition of seed germination and seedling establishment by ABA signaling terminator in Arabidopsis. Molecular Plant 13(9):1284−97 doi: 10.1016/j.molp.2020.06.011 |
| [26] |
Zheng Q, Zhang L, Zhang Q, Pang Z, Sun Y, et al. 2019. Discovery of interacting proteins of ABA receptor PYL5 via covalent chemical capture. ACS Chemical Biology 14(12):2557−63 doi: 10.1021/acschembio.9b00806 |
| [27] |
Zhao Y, Xing L, Wang X, Hou YJ, Gao J, et al. 2014. The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Science Signaling 7(328):ra53 doi: 10.1126/scisignal.2005051 |
| [28] |
Li W, Wang L, Sheng X, Yan C, Zhou R, et al. 2013. Molecular basis for the selective and ABA-independent inhibition of PP2CA by PYL13. Cell Research 23(12):1369−79 doi: 10.1038/cr.2013.143 |
| [29] |
Dittrich M, Mueller HM, Bauer H, Peirats-Llobet M, Rodriguez PL, et al. 2019. The role of Arabidopsis ABA receptors from the PYR/PYL/RCAR family in stomatal acclimation and closure signal integration. Nature Plants 5(9):1002−11 doi: 10.1038/s41477-019-0490-0 |
| [30] |
Wang K, He J, Zhao Y, Wu T, Zhou X, et al. 2018. EAR1 negatively regulates ABA signaling by enhancing 2C protein phosphatase activity. The Plant Cell 30(4):815−34 doi: 10.1105/tpc.17.00875 |
| [31] |
Chen X, Zhu Q, Nie Y, Han F, Li Y, et al. 2021. Determination of conifer age biomarker DAL1 interactome using Y2H-seq. Forestry Research 1:12 doi: 10.48130/FR-2021-0012 |
| [32] |
Wanamaker SA, Garza RM, MacWilliams A, Nery JR, Bartlett A, et al. 2017. CrY2H-seq: a massively multiplexed assay for deep-coverage interactome mapping. Nature Methods 14(8):819−25 doi: 10.1038/nmeth.4343 |
| [33] |
Yin Y, Jia J, He H, Zhao W, Guo Z, et al. 2024. BnSTINet: An experimentally-based transcription factor interaction network in seeds of Brassica napus. Plant Biotechnology Journal 22(4):799−01 doi: 10.1111/pbi.14277 |
| [34] |
Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, et al. 2021. Pfam: the protein families database in 2021. Nucleic Acids Research 49(D1):D412−D419 doi: 10.1093/nar/gkaa913 |
| [35] |
Sun X, Jiao C, Schwaninger H, Chao CT, Ma Y, et al. 2020. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nature Genetics 52(12):1423−32 doi: 10.1038/s41588-020-00723-9 |
| [36] |
Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, et al. 2020. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Research 48(D1):D265−D268 doi: 10.1093/nar/gkz991 |
| [37] |
Letunic I, Khedkar S, Bork P. 2020. SMART: recent updates, new developments and status in 2020. Nucleic Acids Research 49(D1):D458−D460 doi: 10.1093/nar/gkaa937 |
| [38] |
Chen C, Wu Y, Li J, Wang X, Zeng Z, et al. 2023. TBtools-II: a "one for all, all for one" bioinformatics platform for biological big-data mining. Molecular Plant 16(11):1733−42 doi: 10.1016/j.molp.2023.09.010 |
| [39] |
Duvaud S, Gabella C, Lisacek F, Stockinger H, Ioannidis V, et al. 2021. Expasy, the Swiss bioinformatics resource portal, as designed by its users. Nucleic Acids Research 49(W1):W216−W227 doi: 10.1093/nar/gkab225 |
| [40] |
Savojardo C, Martelli PL, Fariselli P, Profiti G, Casadio R. 2018. BUSCA: an integrative web server to predict subcellular localization of proteins. Nucleic Acids Research 46(W1):W459−W466 doi: 10.1093/nar/gky320 |
| [41] |
Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38:3022−27 doi: 10.1093/molbev/msab120 |
| [42] |
Xie J, Chen Y, Cai G, Cai R, Hu Z, et al. 2023. Tree visualization by one table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Research 51(W1):W587−W592 doi: 10.1093/nar/gkad359 |
| [43] |
Geourjon C, Deléage G. 1995. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences 11:681−84 doi: 10.1093/bioinformatics/11.6.681 |
| [44] |
Burley SK, Bhikadiya C, Bi C, Bittrich S, Chao H, et al. 2023. RCSB protein data bank (RCSB. org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Research 51(D1):D488−D508 doi: 10.1093/nar/gkac1077 |
| [45] |
Hu B, Jin J, Guo AY, Zhang H, Luo J, et al. 2015. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8):1296−97 doi: 10.1093/bioinformatics/btu817 |
| [46] |
Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, et al. 2016. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research 44:W344−W350 doi: 10.1093/nar/gkw408 |
| [47] |
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30(1):325−27 doi: 10.1093/nar/30.1.325 |
| [48] |
Wang Y, Tang H, Debarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40(7):e49 doi: 10.1093/nar/gkr1293 |
| [49] |
Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, et al. 2023. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research 51(D1):D638−D646 doi: 10.1093/nar/gkac1000 |
| [50] |
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13(11):2498−504 doi: 10.1101/gr.1239303 |
| [51] |
Podnar J, Deiderick H, Huerta G, Hunicke-Smith S. 2014. Next-generation sequencing RNA-seq library construction. Current Protocols in Molecular Biology 106:4.21.1−4.21.19 doi: 10.1002/0471142727.mb0421s106 |
| [52] |
Celton JM, Gaillard S, Bruneau M, Pelletier S, Aubourg S, et al. 2014. Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control. New Phytologist 203(1):287−99 doi: 10.1111/nph.12787 |
| [53] |
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402−8 doi: 10.1006/meth.2001.1262 |
| [54] |
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15(12):550 doi: 10.1186/s13059-014-0550-8 |
| [55] |
Kanehisa M, Furumichi M, Sato Y, Matsuura Y, Ishiguro-Watanabe M. 2025. KEGG: biological systems database as a model of the real world. Nucleic Acids Research 53(D1):D672−D677 doi: 10.1093/nar/gkae909 |
| [56] |
Yang G, Gao X, Ma K, Li D, Jia C, et al. 2018. The walnut transcription factor JrGRAS2 contributes to high temperature stress tolerance involving in Dof transcriptional regulation and HSP protein expression. BMC Plant Biology 18:367 doi: 10.1186/s12870-018-1568-y |
| [57] |
Yang G, Chen S, Li D, Gao X, Su L, et al. 2019. Multiple transcriptional regulation of walnut JrGSTTau1 gene in response to osmotic stress. Physiologia Plantarum 166:748−61 doi: 10.1111/ppl.12833 |
| [58] |
Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9(7):671−75 doi: 10.1038/nmeth.2089 |
| [59] |
Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, et al. 2020. Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology 62(1):25−54 doi: 10.1111/jipb.12899 |
| [60] |
Zhang G, Lu T, Miao W, Sun L, Tian M, et al. 2017. Genome-wide identification of ABA receptor PYL family and expression analysis of PYLs in response to ABA and osmotic stress in Gossypium. PeerJ 5:e4126 doi: 10.7717/peerj.4126 |
| [61] |
Yadav SK, Santosh Kumar VV, Verma RK, Yadav P, Saroha A, et al. 2020. Genome-wide identification and characterization of ABA receptor PYL gene family in rice. BMC Genomics 21(1):676 doi: 10.1186/s12864-020-07083-y |
| [62] |
Zhang Z, Ali S, Zhang T, Wang W, Xie L. 2020. Identification, evolutionary and expression analysis of PYL-PP2C-SnRK2s gene families in soybean. Plants 9(10):1356 doi: 10.3390/plants9101356 |
| [63] |
Pizzio GA, Mayordomo C, Lozano-Juste J, Garcia-Carpintero V, Vazquez-Vilar M, et al. 2022. PYL1- and PYL8-like ABA receptors of Nicotiana benthamiana play a key role in ABA response in seed and vegetative tissue. Cells 11(5):795 doi: 10.3390/cells11050795 |
| [64] |
Wang G, Qi K, Gao X, Guo L, Cao P, et al. 2022. Genome-wide identification and comparative analysis of the PYL gene family in eight Rosaceae species and expression analysis of seeds germination in pear. BMC Genomics 23(1):233 doi: 10.1186/s12864-022-08456-1 |
| [65] |
Zhang L, Song W, Xin G, Zhu M, Meng X. 2023. Comparative analysis of the PYL gene family in three Ipomoea species and the expression profiling of IbPYL genes during abiotic stress response in sweetpotato. Genes 14(7):1471 doi: 10.3390/genes14071471 |
| [66] |
An Y, Mi X, Xia X, Qiao D, Yu S, et al. 2023. Genome-wide identification of the PYL gene family of tea plants (Camellia sinensis) revealed its expression profiles under different stress and tissues. BMC Genomics 24(1):362 doi: 10.1186/s12864-023-09464-5 |
| [67] |
Li Z, Liu J, Chen Y, Liang A, He W, et al. 2024. Genome-wide identification of PYL/RCAR ABA receptors and functional analysis of LbPYL10 in heat tolerance in goji (Lycium barbarum). Plants 13(6):887 doi: 10.3390/plants13060887 |
| [68] |
Gilbert W. 1987. The exon theory of genes. Cold Spring Harbor Symposia on Quantitative Biology 52:901−5 doi: 10.1101/SQB.1987.052.01.098 |
| [69] |
Gallegos JE, Rose AB. 2019. An intron-derived motif strongly increases gene expression from transcribed sequences through a splicing independent mechanism in Arabidopsis thaliana. Scientific Reports 9(1):13777 doi: 10.1038/s41598-019-50389-5 |
| [70] |
Moore RC, Purugganan MD. 2005. The evolutionary dynamics of plant duplicate genes. Current Opinion in Plant Biology 8(2):122−28 doi: 10.1016/j.pbi.2004.12.001 |
| [71] |
Conant GC, Wolfe KH. 2008. Turning a hobby into a job: how duplicated genes find new functions. Nature Reviews Genetics 9(12):938−50 doi: 10.1038/nrg2482 |
| [72] |
Zhang Z, Luo S, Liu Z, Wan Z, Gao X, et al. 2022. Genome-wide identification and expression analysis of the cucumber PYL gene family. PeerJ 10:e12786 doi: 10.7717/peerj.12786 |
| [73] |
Guo D, Zhou Y, Li HL, Zhu JH, Wang Y, et al. 2017. Identification and characterization of the abscisic acid (ABA) receptor gene family and its expression in response to hormones in the rubber tree. Scientific Reports 7:45157 doi: 10.1038/srep45157 |
| [74] |
Gonzalez-Guzman M, Pizzio GA, Antoni R, Vera-Sirera F, Merilo E, et al. 2012. Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. The Plant Cell 24(6):2483−96 doi: 10.1105/tpc.112.098574 |
| [75] |
Zhao Y, Zhang Z, Gao J, Wang P, Hu T, et al. 2018. Arabidopsis duodecuple mutant of PYL ABA receptors reveals PYL repression of ABA-independent SnRK2 activity. Cell Reports 23(11):3340−3351.e5 doi: 10.1016/j.celrep.2018.05.044 |
| [76] |
Xing L, Zhao Y, Gao J, Xiang C, Zhu JK. 2016. The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth. Scientific Reports 6:27177 doi: 10.1038/srep27177 |
| [77] |
Miao C, Xiao L, Hua K, Zou C, Zhao Y, et al. 2018. Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proceedings of the National Academy of Sciences of the United States of America 115(23):6058−63 doi: 10.1073/pnas.1804774115 |
| [78] |
Zhu JK. 2016. Abiotic stress signaling and responses in plants. Cell 167(2):313−24 doi: 10.1016/j.cell.2016.08.029 |
| [79] |
Shi Y, Ding Y, Yang S. 2018. Molecular regulation of CBF signaling in cold acclimation. Trends in Plant Science 23(7):623−37 doi: 10.1016/j.tplants.2018.04.002 |
| [80] |
Yang Y, Guo Y. 2018. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytologist 217(2):523−39 doi: 10.1111/nph.14920 |
| [81] |
Lei S, Yin J, Li C, Xu Q, Tian B, et al. 2024. Impacts of natural variations in the TaLEA-1A gene on seed dormancy and germination in wheat and transgenic Arabidopsis and rice. Environmental and Experimental Botany 220:105715 doi: 10.1016/j.envexpbot.2024.105715 |
| [82] |
Huang L, Jia J, Zhao X, Zhang M, Huang X, et al. 2018. The ascorbate peroxidase APX1 is a direct target of a zinc finger transcription factor ZFP36 and a late embryogenesis abundant protein OsLEA5 interacts with ZFP36 to co-regulate OsAPX1 in seed germination in rice. Biochemical and Biophysical Research Communications 495(1):339−45 doi: 10.1016/j.bbrc.2017.10.128 |
| [83] |
Li QF, Zhou Y, Xiong M, Ren XY, Han L, et al. 2020. Gibberellin recovers seed germination in rice with impaired brassinosteroid signalling. Plant Science 293:110435 doi: 10.1016/j.plantsci.2020.110435 |
| [84] |
Pang X, Liu S, Suo J, Yang T, Hasan S, et al. 2023. Proteome dynamics analysis reveals the potential mechanisms of salinity and drought response during seed germination and seedling growth in Tamarix hispida. Genes 14(3):656 doi: 10.3390/genes14030656 |