| [1] |
Sharfuddin AA, Molitoris BA. 2011. Pathophysiology of ischemic acute kidney injury. Nature Reviews Nephrology 7:189−200 doi: 10.1038/nrneph.2011.16 |
| [2] |
Malek M, Nematbakhsh M. 2015. Renal ischemia/reperfusion injury; from pathophysiology to treatment. Journal of Renal Injury Prevention 4:20−27 doi: 10.12861/jrip.2015.06 |
| [3] |
Hu J, Chen R, Liu S, Yu X, Zou J, et al. 2016. Global incidence and outcomes of adult patients with acute kidney injury after cardiac surgery: a systematic review and meta-analysis. Journal of Cardiothoracic and Vascular Anesthesia 30:82−89 doi: 10.1053/j.jvca.2015.06.017 |
| [4] |
Tadphale SD, Ramakrishnan K, Spentzas T, Kumar TKS, Allen J, et al. 2021. Impact of different cardiopulmonary bypass strategies on renal injury after pediatric heart surgery. The Annals of Thoracic Surgery 111:1374−79 doi: 10.1016/j.athoracsur.2020.05.056 |
| [5] |
Bellomo R, Kellum JA, Ronco C. 2012. Acute kidney injury. The Lancet 380:756−66 doi: 10.1016/S0140-6736(11)61454-2 |
| [6] |
Pandey D, Chen F, Patel A, Wang CY, Dimitropoulou C, et al. 2011. SUMO1 negatively regulates reactive oxygen species production from NADPH oxidases. Arteriosclerosis, Thrombosis, and Vascular Biology 31:1634−42 doi: 10.1161/ATVBAHA.111.226621 |
| [7] |
Lee JM, Hammarén HM, Savitski MM, Baek SH. 2023. Control of protein stability by post-translational modifications. Nature Communications 14:201 doi: 10.1038/s41467-023-35795-8 |
| [8] |
Vertegaal ACO. 2022. Signalling mechanisms and cellular functions of SUMO. Nature Reviews Molecular Cell Biology 23:715−31 doi: 10.1038/s41580-022-00500-y |
| [9] |
Cubeñas-Potts C, Matunis MJ. 2013. SUMO: a multifaceted modifier of chromatin structure and function. Developmental Cell 24:1−12 doi: 10.1016/j.devcel.2012.11.020 |
| [10] |
Bossis G, Melchior F. 2006. Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Molecular Cell 21:349−57 doi: 10.1016/j.molcel.2005.12.019 |
| [11] |
Shao R, Zhang FP, Tian F, Friberg PA, Wang X, et al. 2004. Increase of SUMO-1 expression in response to hypoxia: direct interaction with HIF-1α in adult mouse brain and heart in vivo. FEBS Letters 569:293−300 doi: 10.1016/j.febslet.2004.05.079 |
| [12] |
Wuerzberger-Davis SM, Nakamura Y, Seufzer BJ, Miyamoto S. 2007. NF-κB activation by combinations of NEMO SUMOylation and ATM activation stresses in the absence of DNA damage. Oncogene 26:641−51 doi: 10.1038/sj.onc.1209815 |
| [13] |
Manza LL, Codreanu SG, Stamer SL, Smith DL, Wells KS, et al. 2004. Global shifts in protein sumoylation in response to electrophile and oxidative stress. Chemical Research in Toxicology 17:1706−15 doi: 10.1021/tx049767l |
| [14] |
Xu Z, Lam LSM, Lam LH, Chau SF, Ng TB, et al. 2008. Molecular basis of the redox regulation of SUMO proteases: a protective mechanism of intermolecular disulfide linkage against irreversible sulfhydryl oxidation. FASEB Journal 22:127−37 doi: 10.1096/fj.06-7871com |
| [15] |
de Souza Ferreira LP, da Silva RA, Borges PP, Xavier LF, Scharf P, et al. 2025. Annexin A1 in neurological disorders: neuroprotection and glial modulation. Pharmacology & Therapeutics 267:108809 doi: 10.1016/j.pharmthera.2025.108809 |
| [16] |
Chen J, Luo Y, Wang S, Zhu H, Li D. 2019. Roles and mechanisms of SUMOylation on key proteins in myocardial ischemia/reperfusion injury. Journal of Molecular and Cellular Cardiology 134:154−64 doi: 10.1016/j.yjmcc.2019.07.009 |
| [17] |
Kroonen JS, Wouters AK, de Graaf IJ, Remst DFG, Kumar S, et al. 2024. Targeting epigenetic regulation and post-translational modification with 5-Aza-2' deoxycytidine and SUMO E1 inhibition augments T-cell receptor therapy. Journal for Immunotherapy of Cancer 12:e008654 doi: 10.1136/jitc-2023-008654 |
| [18] |
Du Y, Hou G, Zhang H, Dou J, He J, et al. 2018. SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function. Nucleic Acids Research 46:5195−208 doi: 10.1093/nar/gky156 |
| [19] |
Guo C, Wei Q, Su Y, Dong Z. 2015. SUMOylation occurs in acute kidney injury and plays a cytoprotective role. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1852:482−89 doi: 10.1016/j.bbadis.2014.12.013 |
| [20] |
Zhou X, Li Y, Wu C, Yu W, Cheng F. 2020. Novel lncRNA XLOC032768 protects against renal tubular epithelial cells apoptosis in renal ischemia-reperfusion injury by regulating FNDC3B/TGF-β1. Renal Failure 42:994−1003 doi: 10.1080/0886022X.2020.1818579 |
| [21] |
Choi YR, Kim JB, Kang SJ, Noh HR, Jou I, et al. 2020. The dual role of c-src in cell-to-cell transmission of α-synuclein. EMBO Reports 21:e48950 doi: 10.15252/embr.201948950 |
| [22] |
Latha K, Patel Y, Rao S, Watford WT. 2023. The influenza-induced pulmonary inflammatory exudate in susceptible Tpl2-deficient mice is dictated by type I IFN signaling. Inflammation 46:322−41 doi: 10.1007/s10753-022-01736-8 |
| [23] |
Wu D, Ma W, Wang L, Long C, Chen S, et al. 2025. Physically engineered extracellular vesicles targeted delivering miR-21-5p to promote renoprotection after renal ischemia-reperfusion injury. Materials Today Bio 31:101528 doi: 10.1016/j.mtbio.2025.101528 |
| [24] |
Li X, Xu R, Zhang D, Cai J, Zhou H, et al. 2025. Baicalin: a potential therapeutic agent for acute kidney injury and renal fibrosis. Frontiers in Pharmacology 16:1511083 doi: 10.3389/fphar.2025.1511083 |
| [25] |
Kalogeris T, Baines CP, Krenz M, Korthuis RJ. 2012. Cell biology of ischemia/reperfusion injury. International Review of Cell and Molecular Biology 298:229−317 doi: 10.1016/B978-0-12-394309-5.00006-7 |
| [26] |
Kura B, Slezak J. 2024. The protective role of molecular hydrogen in ischemia/reperfusion injury. International Journal of Molecular Sciences 25:78−84 doi: 10.3390/ijms25147884 |
| [27] |
Kroonen JS, de Graaf IJ, Kumar S, Remst DFG, Wouters AK, et al. 2023. Inhibition of SUMOylation enhances DNA hypomethylating drug efficacy to reduce outgrowth of hematopoietic malignancies. Leukemia 37:864−76 doi: 10.1038/s41375-023-01838-8 |
| [28] |
Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM. 1997. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 3:1233−47 |
| [29] |
Lossi L, Castagna C, Merighi A. 2024. An overview of the epigenetic modifications in the brain under normal and pathological conditions. International Journal of Molecular Sciences 25:3881 doi: 10.3390/ijms25073881 |
| [30] |
Rabellino A, Andreani C, Scaglioni PP. 2017. The role of PIAS SUMO E3-ligases in cancer. Cancer Research 77:1542−47 doi: 10.1158/0008-5472.CAN-16-2958 |
| [31] |
Chang HM, Yeh ETH. 2020. SUMO: from bench to bedside. Physiological Reviews 100:1599−619 doi: 10.1152/physrev.00025.2019 |
| [32] |
Yang XJ, Chiang CM. 2013. Sumoylation in gene regulation, human disease, and therapeutic action. F1000Prime Reports 5:45 doi: 10.12703/P5-45 |
| [33] |
Krumova P, Weishaupt JH. 2013. Sumoylation in neurodegenerative diseases. Cellular and Molecular Life Sciences 70:2123−38 doi: 10.1007/s00018-012-1158-3 |
| [34] |
Zhang H, Wang Y, Zhu A, Huang D, Deng S, et al. 2016. SUMO-specific protease 1 protects neurons from apoptotic death during transient brain ischemia/reperfusion. Cell Death & Disease 7:e2484 doi: 10.1038/cddis.2016.290 |
| [35] |
Li O, Ma Q, Li F, Cai GY, Chen XM, et al. 2019. Progress of small ubiquitin-related modifiers in kidney diseases. Chinese Medical Journal 132:466−73 doi: 10.1097/CM9.0000000000000094 |
| [36] |
Yang W, Sheng H, Warner DS, Paschen W. 2008. Transient global cerebral ischemia induces a massive increase in protein sumoylation. Journal of Cerebral Blood Flow and Metabolism 28:269−79 doi: 10.1038/sj.jcbfm.9600523 |
| [37] |
Wiryawan H, Dan K, Etuale M, Shen Y, Liao J. 2015. Determination of SUMO1 and ATP affinity for the SUMO E1by quantitative FRET technology. Biotechnology and Bioengineering 112:652−58 doi: 10.1002/bit.25480 |
| [38] |
Goffinont S, Coste F, Prieu-Serandon P, Mance L, Gaudon V, et al. 2023. Structural insights into the regulation of the human E2~SUMO conjugate through analysis of its stable mimetic. Journal of Biological Chemistry 299:104870 doi: 10.1016/j.jbc.2023.104870 |
| [39] |
Zhang FP, Mikkonen L, Toppari J, Palvimo JJ, Thesleff I, et al. 2008. Sumo-1 function is dispensable in normal mouse development. Molecular and Cellular Biology 28:5381−90 doi: 10.1128/MCB.00651-08 |
| [40] |
Liu X, Chen L, Zhang C, Dong W, Liu H, et al. 2023. Ginkgolic acid promotes inflammation and macrophage apoptosis via SUMOylation and NF-κB pathways in sepsis. Frontiers in Medicine 9:1108882 doi: 10.3389/fmed.2022.1108882 |
| [41] |
Paddibhatla I, Lee MJ, Kalamarz ME, Ferrarese R, Govind S. 2010. Role for sumoylation in systemic inflammation and immune homeostasis in Drosophila larvae. PLoS Pathogens 6:e1001234 doi: 10.1371/journal.ppat.1001234 |
| [42] |
Liu B, Shuai K. 2009. Summon SUMO to wrestle with inflammation. Molecular Cell 35:731−32 doi: 10.1016/j.molcel.2009.09.002 |
| [43] |
Sheng Z, Zhu J, Deng YN, Gao S, Liang S. 2021. SUMOylation modification-mediated cell death. Open Biology 11:210050 doi: 10.1098/rsob.210050 |
| [44] |
Wang J, Chen L, Wen S, Zhu H, Yu W, et al. 2011. Defective sumoylation pathway directs congenital heart disease. Birth Defects Research Part A, Clinical and Molecular Teratology 91:468−76 doi: 10.1002/bdra.20816 |
| [45] |
Gâtel P, Piechaczyk M, Bossis G. 2020. Ubiquitin, SUMO, and Nedd8 as therapeutic targets in cancer. Advances in Experimental Medicine and Biology 1233:29−54 doi: 10.1007/978-3-030-38266-7_2 |
| [46] |
Jiang C, Zhang C, Dai M, Wang F, Xu S, et al. 2024. Interplay between SUMO1-related SUMOylation and phosphorylation of p65 promotes hepatocellular carcinoma progression. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1871:119595 doi: 10.1016/j.bbamcr.2023.119595 |
| [47] |
Harder Z, Zunino R, McBride H. 2004. Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Current Biology 14:340−45 doi: 10.1016/j.cub.2004.02.004 |
| [48] |
Wasiak S, Zunino R, McBride HM. 2007. Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. The Journal of Cell Biology 177:439−50 doi: 10.1083/jcb.200610042 |
| [49] |
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, et al. 2017. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273−85 doi: 10.1016/j.cell.2017.09.021 |
| [50] |
Stankovic-Valentin N, Melchior F. 2018. Control of SUMO and ubiquitin by ROS: signaling and disease implications. Molecular Aspects of Medicine 63:3−17 doi: 10.1016/j.mam.2018.07.002 |
| [51] |
Guo H, Xu J, Zheng Q, He J, Zhou W, et al. 2019. NRF2 SUMOylation promotes de novo serine synthesis and maintains HCC tumorigenesis. Cancer Letters 466:39−48 doi: 10.1016/j.canlet.2019.09.010 |
| [52] |
Hosszu A, Fekete A, Szabo AJ. 2020. Sex differences in renal ischemia-reperfusion injury. American Journal of Physiology Renal Physiology 319:F149−F154 doi: 10.1152/ajprenal.00099.2020 |