| [1] |
Ntui VO, Uyoh EA, Ita EE, Markson AAA, Tripathi JN, et al. 2021. Strategies to combat the problem of yam anthracnose disease: status and prospects. Molecular Plant Pathology 22(10):1302−14 doi: 10.1111/mpp.13107 |
| [2] |
Wu J, GongY, Zhang C, Li Y, Xing L. 2019. Causes of anthracnose in yam and comprehensive control technology. Anhui Agricultural Bulletin 25:93−94 |
| [3] |
Chen H, Liu X, Qi H, Wang L, Yuan L. 2010. Initial report on the survey of yam disease types and infestation characteristics in Baoding City. China Plant Protection Guide 30:24−26 |
| [4] |
Chen X, Ye H, Yan J, Qin Y, Wu G. 2006. Survey and pathogen identification of medicinal plant diseases in Sichuan I. Major cultivated medicinal plant diseases. Southwest Journal of Agriculture 1:58−62 |
| [5] |
Li J, Jia H, Chen D. 2005. Progress of research on major diseases of yam and problems in production. Journal of Northwest Agriculture and Forestry University (Natural Science Edition) 2005:243−46 |
| [6] |
Huang T, Jiang J, Yu G, Xiong A, Wang Y. 2014. Recent research progress on yam diseases. Biohazard Science 37:74−78 |
| [7] |
Zhang GL. 2019. Pollution-free production and pest control technology of yam in Peixian County. Agricultural Technology Service 36:51−52 |
| [8] |
Wu Q, Jing Y, Liang T. 2005. The study on the research and control of diseases in Dioscorea opposita Thunb. Journal of Shanxi Agricultural University 4:101−2 doi: 10.13842/j.cnki.issn1671-816x.2005.06.029 |
| [9] |
Kang L, Qi F, Xu X, Li J. 2010. Relationship between wax and cuticle of tomato leaves and the infestation of Sesbania pseudomallei. Chinese Vegetable 18:47−50 |
| [10] |
Li X, Wang S, Shi J, Gao Z. 2020. Progress in the synthesis of plant epidermal waxes and regulation of WIN/SHN. Biotechnology Bulletin 36:129−36 |
| [11] |
Zhang Q, Li X, Long X, Hu B, Xiao X, et al. 2020. Research on plant cuticular wax metabolism and disease resistance mechanism. Journal of Zhejiang Agriculture and Forestry University 37:1207−15 |
| [12] |
Qiu D, Ding H, Qi L. 2010. Comparative analysis of stomata number in Sun plants and shade plants. Shandong Agricultural Sciences 42:41−43 doi: 10.3969/j.issn.1001-4942.2010.08.013 |
| [13] |
Li Z, Liu J, Gu H, Meng W, Zhang Y. 2016. Progress of research on the effect of drought stress on stomatal characteristics of plants. Subtropical Plant Science 45:195−200 |
| [14] |
De Vleesschauwer D, Yang Y, Cruz CV, Höfte M. 2010. Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant Physiology 152:2036−52 doi: 10.1104/pp.109.152702 |
| [15] |
Melotto M, Underwood W, Koczan J, Nomura K, He SY. 2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126:969−80 doi: 10.1016/j.cell.2006.06.054 |
| [16] |
Tewtrakul S, Itharat A. 2006. Anti-allergic substances from the rhizomes of Dioscorea membranacea. Bioorganic & Medicinal Chemistry 14:8707−11 doi: 10.1016/j.bmc.2006.08.012 |
| [17] |
Zhao M, Bi HG, Meng L, Jiang T, Zhang X, et al. 2024. The regulatory mechanism of cold circulation induction stress memory in chilling tolerance in cucumber. Scientia Agricultura Sinica 57(24):4933−44 doi: 10.3864/j.issn.0578-1752.2024.24.009 |
| [18] |
Zhang D, Gao X, Zhao Z, Qin H, Huang L. 2019. Study on the resistance differences of different kiwifruit varieties to ulcer disease and its mechanism. Journal of Fruit Tree 36(11):1549−57 |
| [19] |
Koukol J, Conn EE. 1961. The metabolism of aromatic compounds in higher plants: IV. purification and properties of the phenylalanine deaminase of Hordeum vulgare. Journal of Biological Chemistry 236:2692−98 doi: 10.1016/S0021-9258(19)61721-7 |
| [20] |
Fen J, Chen Q. 1991. Apreliminary study on the relationship between several biochemical substances and wilt resistance in cotton plants. Journal of Plant Pathology 21(04):291−97 |
| [21] |
Wang J, Xue Y. 1982. Studies on plant phenylalanine deaminase. II. Role of phenylalanine deaminase in resistance to potato late blight. Journal of Plant Physiology 1982:35−43 |
| [22] |
Li B, Li F. 1998. Changes of peroxidase and polyphenol oxidase in different resistant varieties of cucumber infected with the black star pathogen. Chinese Agricultural Science 31(1):86−88 |
| [23] |
Garipova S, Matyunina V, Chistoedova A, Markova O, Lubyanova A, et al. 2024. Antioxidant system activity in roots and shoots of bean cultivars in response to seed treatment with auxin as a potential model of interaction with endophytic bacteria. Plants 13(23):3365 doi: 10.3390/plants13233365 |
| [24] |
Zhou H, Dong K, Du Q, Wei Q, Wu J, et al. 2024. Biofilm-forming of Bacillus tequilensis DZY 6715 enhanced suppression the Camellia oleifera anthracnose caused by Colletotrichum fructicola and its mechanism. Scientia Horticulturae 338:113676 doi: 10.1016/j.scienta.2024.113676 |
| [25] |
Williams PH. 1985. The Crucifer Genetics Cooperative. Plant Molecular Biology Reporter 3:129−44 doi: 10.1007/BF02885592 |
| [26] |
Liu X, Yu F, Fu D, Yang W, Jia X, et al. 2018. Isolation and characterization of anthracnose pathogens of oil tea. China Fruit and Vegetable 38(11):40−42 |
| [27] |
Huang X, Zhang P, Wu X, Zhang L, Hu G. 2009. Review on plant endogenous hormones determination methods. Chinese Agricultural Science Bulletin 25(11):84−87 |
| [28] |
Wang Z, Yang M, Yang Y, Peng Z, Zhou E. 2010. Morphological and molecular characterization of citrus anthracnose pathogens in Guangdong Province. Journal of Mycology 29(4):488−93 |
| [29] |
Xie L, Zhang JZ, Wan Y, Hu DW. 2010. Identification of Colletotrichum spp. isolated from strawberry in Zhejiang Province and Shanghai City, China. Journal of Zhejiang University Science B 11:61−70 doi: 10.1631/jzus.B0900174 |
| [30] |
Tram TTN, Quang HT, Nguyen VU, Nguyen PTT, Thi TNM, et al. 2023. Isolation of bacteria displaying potent antagonistic activity against fungi causes anthracnose disease in chili. Biodiversitas Journal of Biological Diversity 24(9):4919−26 doi: 10.13057/biodiv/d240934 |
| [31] |
Crouch JA, Tredway LP, Clarke BB, Hillman BI. 2009. Phylogenetic and population genetic divergence correspond with habitat for the pathogen Colletotrichum cereale and allied taxa across diverse grass communities. Molecular Ecology 18(1):123−35 doi: 10.1111/j.1365-294X.2008.04008.x |
| [32] |
Liu F, Cai L, Crous PW, Damm U. 2013. Circumscription of the anthracnose pathogens Colletotrichum lindemuthianum and C. nigrum. Mycologia 105(4):844−60 doi: 10.3852/12-315 |
| [33] |
Liu F, Ma ZY, Hou LW, Diao YZ, Wu WP, et al. 2022. Updating species diversity of Colletotrichum, with a phylogenomic overview. Studies in Mycology 101:1−56 doi: 10.3114/sim.2022.101.01 |
| [34] |
Fang L, Liu W, Zheng X, Xie Y, Wang L, et al. 2018. Occurrence pattern and infestation characteristics of anthracnose in glutinous rice yam. Zhejiang Agricultural Science 59:293−95 |
| [35] |
Cong Z, Zhong B, Huang D, Xie J, Wu W, et al. 2018. Differentiation of pathogenicity of anthracnose fungi in southern Huayama. Southern Journal of Agriculture 49:501−7 |
| [36] |
Zhu G, Cai J, Hu C, Wei B, Huang F. 2007. Identification and ITS sequence analysis of the pathogen of yam anthracnose in Guangxi. Acta Phytopathologica Sinica 37(06):572−77 doi: 10.13926/j.cnki.apps.2007.06.018 |
| [37] |
Chen G, Yi S, Jin C, Guo K, Hu B, et al. 2023. Isolation and characterization of anthracnose pathogen of yam and its indoor virulence. China Cucurbit 36(11):122−26 |
| [38] |
Abang MM, Winter S, Green KR, Hoffmann P, Mignouna HD, et al. 2002. Molecular identification of Colletotrichum gloeosporioides causing yam anthracnose in Nigeria. Plant Pathology 51(1):63−71 doi: 10.1046/j.0032-0862.2001.00655.x |
| [39] |
Liu Y. 2005. Identification of yam anthracnose pathogen and screening of agents. Anhui Agricultural Science 33(12):2327−39 |
| [40] |
Fu J, Wang S, Zhou R, Liu B. 2014. Pathogen identification of yam anthracnose and its biological characteristics in Liaoning Province. Journal of Jilin Agricultural University 36(04):395−400 doi: 10.13327/j.jjlau.2014.1885 |
| [41] |
Palaniyandi SA, Yang SH, Cheng JH, Meng L, Suh JW. 2011. Biological control of anthracnose (Colletotrichum gloeosporioides) in yam by Streptomyces sp. MJM5763. Journal of Applied Microbiology 111(2):443−55 doi: 10.1111/j.1365-2672.2011.05048.x |
| [42] |
Lin CH, Wu WQ, Liao XM, Liu WB, Miao WG, et al. 2018. First Report of leaf anthracnose caused by Colletotrichum alatae on water yam (Dioscorea alata) in China. Plant Disease 102:248−49 doi: 10.1094/PDIS-07-17-0979-PDN |
| [43] |
Nkalubo ST, Namayanja A, Namusoke A, Mukabaranga J, Shakirah N, et al. 2024. Agronomic performance, stability analysis and evaluation of anthracnose disease resistance of common bean lines derived by marker-assisted backcrossing in Uganda. Agricultural Sciences 15(3):376−97 doi: 10.4236/as.2024.153022 |
| [44] |
Kazan K, Manners JM. 2009. Linking development to defense: auxin in plant–pathogen interactions. Trends in Plant Science 14:373−82 doi: 10.1016/j.tplants.2009.04.005 |
| [45] |
Choi J, Huh SU, Kojima M, Sakakibara H, Paek KH, et al. 2010. The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Developmental Cell 19:284−95 doi: 10.1016/j.devcel.2010.07.011 |
| [46] |
Asselbergh B, De Vleesschauwer D, Höfte M. 2008. Global switches and fine-tuning-ABA modulates plant pathogen defense. Molecular Plant-Microbe Interactions 21:709−19 doi: 10.1094/MPMI-21-6-0709 |
| [47] |
Alonso-Ramírez A, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, et al. 2009. Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiology 150:1335−44 doi: 10.1104/pp.109.139352 |
| [48] |
Oh MH, Wang X, Wu X, Zhao Y, Clouse SD, et al. 2010. Autophosphorylation of Tyr-610 in the receptor kinase BAK1 plays a role in brassinosteroid signaling and basal defense gene expression. Proceedings of the National Academy of Sciences of the United States of America 107:17827−32 doi: 10.1073/pnas.0915064107 |
| [49] |
Wang Z, Bei X, Zhu S, Ma Y, Yang R. 2011. Advances in the role of phytohormones in plant disease resistance. Anhui Agricultural Science 39(15):9035−38 |
| [50] |
Sussmilch FC, Schultz J, Hedrich R, Roelfsema MRG. 2019. Acquiring control: the evolution of stomatal signalling pathways. Trends in Plant Science 24:342−51 doi: 10.1016/j.tplants.2019.01.002 |
| [51] |
Melotto M, Zhang L, Oblessuc PR, He SY. 2017. Stomatal defense a decade later. Plant Physiology 174:561−71 doi: 10.1104/pp.16.01853 |
| [52] |
Thor K, Jiang S, Michard E, George J, Scherzer S, et al. 2020. The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature 585:569−73 doi: 10.1038/s41586-020-2702-1 |
| [53] |
Chen S, Zhao Z, Liu X, Li K, Arif M, et al. 2024. Response and disease resistance evaluation of sorghum seedlings under anthracnose stress. Scientific Reports 14(1):21978 doi: 10.1038/s41598-024-70088-0 |
| [54] |
Augustine L, Varghese L, Kappachery S, Ramaswami VM, Surendrababu SP, et al. 2024. Comparative analyses reveal a phenylalanine ammonia lyase dependent and salicylic acid mediated host resistance in Zingiber zerumbet against the necrotrophic soft rot pathogen Pythium myriotylum. Plant Science 340:111972 doi: 10.1016/j.plantsci.2023.111972 |
| [55] |
Shang Q, Zhang Z. 2008. Inductance and resistance of spermidine to gray mold of cucumber seedlings. Chinese Journal of Applied Ecology 2008:825−30 |
| [56] |
Jiang C, Yu Y. 2001. Research progress of phenylalanine ammonia lyase (review). Journal of Anhui Agricultural University 28(4):425−30 |
| [57] |
Sahebani N, Gholamrezaee N. 2022. The ability of Meloidogyne javanica to suppress salicylic acid-induced plant defence responses. Nematology 24(5):499 doi: 10.1163/15685411-bja10145 |
| [58] |
Tonnessen BW, Manosalva P, Lang JM, Baraoidan M, Bordeos A, et al. 2015. Rice phenylalanine ammonia-lyase gene OsPAL4 is associated with broad spectrum disease resistance. Plant Molecular Biology 87:273−86 doi: 10.1007/s11103-014-0275-9 |