[1]

Diao Q, Tian S, Cao Y, Yao D, Fan H, et al. 2023. Transcriptome analysis reveals association of carotenoid metabolism pathway with fruit color in melon. Scientific Reports 13(1):5004

doi: 10.1038/s41598-023-31432-y
[2]

Duan X, Jiang C, Zhao Y, Gao G, Li M, et al. 2022. Transcriptome and metabolomics analysis revealed that CmWRKY49 regulating CmPSY1 promotes β-carotene accumulation in orange fleshed oriental melon. Horticultural Plant Journal 8:650−66

doi: 10.1016/j.hpj.2022.07.005
[3]

Nuñez-Palenius HG, Gomez-Lim M, Ochoa-Alejo N, Grumet R, Lester G, et al. 2008. Melon fruits: genetic diversity, physiology, and biotechnology features. Critical Reviews in Biotechnology 28:13−55

doi: 10.1080/07388550801891111
[4]

Guo X, Xu J, Cui X, Chen H, Qi H. 2017. iTRAQ-based protein profiling and fruit quality changes at different development stages of oriental melon. BMC Plant Biology 17:28

doi: 10.1186/s12870-017-0977-7
[5]

Ding BY, Niu J, Shang F, Yang L, Chang TY, et al. 2019. Characterization of the geranylgeranyl diphosphate synthase gene in Acyrthosiphon pisum (Hemiptera: Aphididae) and its association with carotenoid biosynthesis. Frontiers in Physiology 10:1398

doi: 10.3389/fphys.2019.01398
[6]

Hirschberg J. 2001. Carotenoid biosynthesis in flowering plants. Current Opinion in Plant Biology 4:210−8

doi: 10.1016/S1369-5266(00)00163-1
[7]

Rodrigo-Baños M, Garbayo I, Vílchez C, Bonete MJ, Martínez-Espinosa RM. 2015. Carotenoids from haloarchaea and their potential in biotechnology. Marine Drugs 13:5508−32

doi: 10.3390/md13095508
[8]

Watkins JL, Pogson BJ. 2020. Prospects for carotenoid biofortification targeting retention and catabolism. Trends in Plant Science 25:501−12

doi: 10.1016/j.tplants.2019.12.021
[9]

Sun Q, He Z, Wei R, Yin Y, Ye J, et al. 2023. Transcription factor CsTT8 promotes fruit coloration by positively regulating the methylerythritol 4-phosphate pathway and carotenoid biosynthesis pathway in citrus (Citrus spp.). Horticulture Research 10:uhad199

doi: 10.1093/hr/uhad199
[10]

Lawrence JD, Li H, Rauchfuss TB, Bénard M, Rohmer MM. 2001. Diiron azadithiolates as models for the iron-only hydrogenase active site: synthesis, structure, and stereoelectronics. Angewandte Chemie International Edition 40:1768−71

doi: 10.1002/1521-3773(20010504)40:9<1768::AID-ANIE17680>3.0.CO;2-E
[11]

Schwender J, Gemünden C, Lichtenthaler HK. 2001. Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta 212:416−23

doi: 10.1007/s004250000409
[12]

Lu S, Li L. 2008. Carotenoid metabolism: biosynthesis, regulation, and beyond. Journal of Integrative Plant Biology 50:778−85

doi: 10.1111/j.1744-7909.2008.00708.x
[13]

Quian-Ulloa R, Stange C. 2021. Carotenoid biosynthesis and plastid development in plants: the role of light. International Journal of Molecular Sciences 22(3):1184

doi: 10.3390/ijms22031184
[14]

Henriquez MA, Soliman A, Li G, Hannoufa A, Ayele BT, et al. 2016. Molecular cloning, functional characterization and expression of potato (Solanum tuberosum) 1-deoxy-d-xylulose 5-phosphate synthase 1 (StDXS1) in response to Phytophthora infestans. Plant Science 243:71−83

doi: 10.1016/j.plantsci.2015.12.001
[15]

Simpson K, Quiroz LF, Rodriguez-Concepción M, Stange CR. 2016. Differential contribution of the first two enzymes of the MEP pathway to the supply of metabolic precursors for carotenoid and chlorophyll biosynthesis in carrot (Daucus carota). Frontiers in Plant Science 7:1344

doi: 10.3389/fpls.2016.01344
[16]

Sun T, Li L. 2020. Toward the 'golden' era: the status in uncovering the regulatory control of carotenoid accumulation in plants. Plant Science 290:110331

doi: 10.1016/j.plantsci.2019.110331
[17]

Sun T, Yuan H, Cao H, Yazdani M, Tadmor Y, et al. 2018. Carotenoid metabolism in plants: the role of plastids. Molecular Plant 11:58−74

doi: 10.1016/j.molp.2017.09.010
[18]

Hermanns AS, Zhou X, Xu Q, Tadmor Y, Li L. 2020. Carotenoid pigment accumulation in horticultural plants. Horticultural Plant Journal 6:343−60

doi: 10.1016/j.hpj.2020.10.002
[19]

Jahns P, Holzwarth AR. 2012. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1817:182−93

doi: 10.1016/j.bbabio.2011.04.012
[20]

Neuman H, Galpaz N, Cunningham FX Jr, Zamir D, Hirschberg J. 2014. The tomato mutation nxd1 reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis. The Plant Journal 78:80−93

doi: 10.1111/tpj.12451
[21]

Nisar N, Li L, Lu S, Khin NC, Pogson BJ. 2015. Carotenoid metabolism in plants. Molecular Plant 8:68−82

doi: 10.1016/j.molp.2014.12.007
[22]

Al-Babili S, Bouwmeester HJ. 2015. Strigolactones, a novel carotenoid-derived plant hormone. Annual Review of Plant Biology 66:161−86

doi: 10.1146/annurev-arplant-043014-114759
[23]

Beltran JCM, Stange C. 2016. Apocarotenoids: a new carotenoid-derived pathway. Sub-Cellular Biochemistry 79:239−72

doi: 10.1007/978-3-319-39126-7_9
[24]

Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K. 2006. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiology 142:1193−201

doi: 10.1104/pp.106.087130
[25]

Adami M, De Franceschi P, Brandi F, Liverani A, Giovannini D, et al. 2013. Identifying a carotenoid cleavage dioxygenase (ccd4) gene controlling yellow/white fruit flesh color of peach. Plant Molecular Biology Reporter 31:1166−75

doi: 10.1007/s11105-013-0628-6
[26]

Zheng X, Zhu K, Sun Q, Zhang W, Wang X, et al. 2019. Natural variation in CCD4 promoter underpins species-specific evolution of red coloration in citrus peel. Molecular Plant 12:1294−307

doi: 10.1016/j.molp.2019.04.014
[27]

Gao J, Yang S, Tang K, Li G, Gao X, et al. 2021. GmCCD4 controls carotenoid content in soybeans. Plant Biotechnology Journal 19:801−13

doi: 10.1111/pbi.13506
[28]

Yuan H, Zhang J, Nageswaran D, Li L. 2015. Carotenoid metabolism and regulation in horticultural crops. Horticulture Research 2:15036

doi: 10.1038/hortres.2015.36
[29]

Schweiggert RM, Steingass CB, Heller A, Esquivel P, Carle R. 2011. Characterization of chromoplasts and carotenoids of red- and yellow-fleshed papaya (Carica papaya L.). Planta 234:1031−44

doi: 10.1007/s00425-011-1457-1
[30]

Jeffery J, Holzenburg A, King S. 2012. Physical barriers to carotenoid bioaccessibility. Ultrastructure survey of chromoplast and cell wall morphology in nine carotenoid-containing fruits and vegetables. Journal of the Science of Food and Agriculture 92:2594−602

doi: 10.1002/jsfa.5767
[31]

Simpson K, Cerda A, Stange C. 2016. Carotenoid biosynthesis in Daucus carota. Sub-Cellular Biochemistry 79:199−217

doi: 10.1007/978-3-319-39126-7_7
[32]

Paolillo DJ Jr, Garvin DF, Parthasarathy MV. 2004. The chromoplasts of Or mutants of cauliflower (Brassica oleracea L. var. Botrytis). Protoplasma 224:245−53

doi: 10.1007/s00709-004-0059-1
[33]

Tzuri G, Zhou X, Chayut N, Yuan H, Portnoy V, et al. 2015. A 'golden' SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). The Plant Journal 82(5):267−79

doi: 10.1111/tpj.12814
[34]

Galpaz N, Gonda I, Shem-Tov D, Barad O, Tzuri G, et al. 2018. Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping. The Plant Journal 94:169−91

doi: 10.1111/tpj.13838
[35]

Feder A, Chayut N, Gur A, Freiman Z, Tzuri G, et al. 2019. The role of carotenogenic metabolic flux in carotenoid accumulation and chromoplast differentiation: lessons from the melon fruit. Frontiers in Plant Science 10:1250

doi: 10.3389/fpls.2019.01250
[36]

Chayut N, Yuan H, Ohali S, Meir A, Sa'ar U, et al. 2017. Distinct mechanisms of the ORANGE protein in controlling carotenoid flux. Plant Physiology 173(1):376−89

doi: 10.1104/pp.16.01256
[37]

Lu S, Zhang Y, Zhu K, Yang W, Ye J, et al. 2018. The citrus transcription factor CsMADS6 modulates carotenoid metabolism by directly regulating carotenogenic genes. Plant Physiology 176:2657−76

doi: 10.1104/pp.17.01830
[38]

Xiong C, Luo D, Lin A, Zhang C, Shan L, et al. 2019. A tomato B-box protein SlBBX20 modulates carotenoid biosynthesis by directly activating PHYTOENE SYNTHASE 1, and is targeted for 26S proteasome-mediated degradation. New Phytologist 221:279−94

doi: 10.1111/nph.15373
[39]

Lu S, Ye J, Zhu K, Zhang Y, Zhang M, et al. 2021. A fruit ripening-associated transcription factor CsMADS5 positively regulates carotenoid biosynthesis in citrus. Journal of Experimental Botany 72:3028−43

doi: 10.1093/jxb/erab045
[40]

Llorente B, D'Andrea L, Ruiz-Sola MA, Botterweg E, Pulido P, et al. 2016. Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism. The Plant Journal 85:107−19

doi: 10.1111/tpj.13094
[41]

Zhou D, Shen Y, Zhou P, Fatima M, Lin J, et al. 2019. Papaya CpbHLH1/2 regulate carotenoid biosynthesis-related genes during papaya fruit ripening. Horticulture Research 6:80

doi: 10.1038/s41438-019-0162-2
[42]

Zhu M, Chen G, Zhou S, Tu Y, Wang Y, et al. 2014. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant and Cell Physiology 55:119−35

doi: 10.1093/pcp/pct162
[43]

Zhu F, Luo T, Liu C, Wang Y, Yang H, et al. 2017. An R2R3-MYB transcription factor represses the transformation of α- and β-branch carotenoids by negatively regulating expression of CrBCH2 and CrNCED5 in flavedo of Citrus reticulate. New Phytologis 216:178−92

doi: 10.1111/nph.14684
[44]

Ampomah-Dwamena C, Thrimawithana AH, Dejnoprat S, Lewis D, Espley RV, et al. 2019. A kiwifruit (Actinidia deliciosa) R2R3-MYB transcription factor modulates chlorophyll and carotenoid accumulation. New Phytologist 221:309−25

doi: 10.1111/nph.15362
[45]

Han Y, Wu M, Cao L, Yuan W, Dong M, et al. 2016. Characterization of OfWRKY3, a transcription factor that positively regulates the carotenoid cleavage dioxygenase gene OfCCD4 in Osmanthus fragrans. Plant Molecular Biology 91:485−96

doi: 10.1007/s11103-016-0483-6
[46]

Yuan Y, Ren S, Liu X, Su L, Wu Y, et al. 2022. SlWRKY35 positively regulates carotenoid biosynthesis by activating the MEP pathway in tomato fruit. New Phytologist 234:164−78

doi: 10.1111/nph.17977
[47]

Wang Z, Zhang S, Yang Y, Li Z, Li H, et al. 2022. Novel bisexual flower control gene regulates sex differentiation in melon (Cucumis melo L.). Journal of Agricultural and Food Chemistry 70:15401−14

doi: 10.1021/acs.jafc.2c05998
[48]

de Oliveira Cavalcanti Medeiros AK, de Carvalho Gomes C, de Araújo Amaral MLQ, de Medeiros LDG, Medeiros I, et al. 2019. Nanoencapsulation improved water solubility and color stability of carotenoids extracted from Cantaloupe melon (Cucumis melo L.). Food Chemistry 270:562−72

doi: 10.1016/j.foodchem.2018.07.099
[49]

Anders S, Pyl PT, Huber W. 2015. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166−69

doi: 10.1093/bioinformatics/btu638
[50]

Zou H, Zhou L, Han L, Lü J, Wang Y. 2021. Changes of carotenoid components and expression of the related genes during petal coloring of Paeonia delavayi. Acta Horticulturae Sinica 48:1934−44

doi: 10.16420/j.issn.0513-353x.2021-0613
[51]

Qin G, Gu H, Ma L, Peng Y, Deng XW, et al. 2007. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Research 17:471−82

doi: 10.1038/cr.2007.40
[52]

Rodrigo MJ, Marcos JF, Zacarías L. 2004. Biochemical and molecular analysis of carotenoid biosynthesis in flavedo of orange (Citrus sinensis L.) during fruit development and maturation. Journal of Agricultural and Food Chemistry 52:6724−31

doi: 10.1021/jf049607f
[53]

Cunningham FX Jr, Pogson B, Sun Z, McDonald KA, DellaPenna D, et al. 1996. Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. The Plant Cell 8:1613−26

doi: 10.1105/tpc.8.9.1613
[54]

Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, et al. 2008. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330−33

doi: 10.1126/science.1150255
[55]

Wu M, Lewis J, Moore RC. 2017. A wild origin of the loss-of-function lycopene beta cyclase (CYC-b) allele in cultivated, red-fleshed papaya (Carica papaya). American Journal of Botany 104:116−26

doi: 10.3732/ajb.1600301
[56]

Song XY, Zhu WJ, Tang RM, Cai JH, Chen M, et al. 2016. Over-expression of StLCYb increases β-carotene accumulation in potato tubers. Plant Biotechnology Reports 10:95−104

doi: 10.1007/s11816-016-0390-y
[57]

Ralley L, Schuch W, Fraser PD, Bramley PM. 2016. Genetic modification of tomato with the tobacco lycopene β-cyclase gene produces high β-carotene and lycopene fruit. Journal of Biosciences 71:295−301

doi: 10.1515/znc-2016-0102
[58]

Chayut N, Yuan H, Saar Y, Zheng Y, Sun T, et al. 2021. Comparative transcriptome analyses shed light on carotenoid production and plastid development in melon fruit. Horticulture Research 8:112

doi: 10.1038/s41438-021-00547-6
[59]

Wang L, Zhang XL, Wang L, Tian Y, Jia N, et al. 2017. Regulation of ethylene-responsive SlWRKYs involved in color change during tomato fruit ripening. Scientific Reports 7:16674

doi: 10.1038/s41598-017-16851-y
[60]

Kräutler B, Matile P. 1999. Solving the riddle of chlorophyll breakdown. Accounts of Chemical Research 32:35−43

doi: 10.1021/ar970225n
[61]

Wu M, Xu X, Hu X, Liu Y, Cao H, et al. 2020. SlMYB72 regulates the metabolism of chlorophylls, carotenoids, and flavonoids in tomato fruit. Plant Physiology 183:854−68

doi: 10.1104/pp.20.00156
[62]

Ma N, Feng H, Meng X, Li D, Yang D, et al. 2014. Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening. BMC Plant Biology 14:351

doi: 10.1186/s12870-014-0351-y
[63]

Fu CC, Han YC, Fan ZQ, Chen JY, Chen WX, et al. 2016. The papaya transcription factor CpNAC1 modulates carotenoid biosynthesis through activating phytoene desaturase genes CpPDS2/4 during fruit ripening. Journal of Agricultural and Food Chemistry 64:5454−63

doi: 10.1021/acs.jafc.6b01020