[1]

Evelin H, Kapoor R, Giri B. 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany 104:1263−80

doi: 10.1093/aob/mcp251
[2]

Munns R. 2002. Comparative physiology of salt and water stress. Plant, Cell & Environment 25:239−50

doi: 10.1046/j.0016-8025.2001.00808.x
[3]

Zhao C, Zhang H, Song C, Zhu JK, Shabala S. 2020. Mechanisms of plant responses and adaptation to soil salinity. The Innovation 1:100017

doi: 10.1016/j.xinn.2020.100017
[4]

Van Zelm E, Zhang Y, Testerink C. 2020. Salt tolerance mechanisms of plants. Annual Review of Plant Biology 71:403−33

doi: 10.1146/annurev-arplant-050718-100005
[5]

Zhao S, Zhang Q, Liu M, Zhou H, Ma C, et al. 2021. Regulation of plant responses to salt stress. International Journal of Molecular Sciences 22:4609

doi: 10.3390/ijms22094609
[6]

Guo M, Wang XS, Guo HD, Bai SY, Khan A, et al. 2022. Tomato salt tolerance mechanisms and their potential applications for fighting salinity: a review. Frontiers in Plant Science 13:949541

doi: 10.3389/fpls.2022.949541
[7]

Seth R. 2022. Screening for salinity tolerance in tomato during germination using in vitro approach - a review. International Journal of Botanical Studies 7:121−25

[8]

Maas EV, Hoffman GJ. 1977. Crop salt tolerance—current assessment. Journal of the Irrigation and Drainage Division 103:115−34

doi: 10.1061/jrcea4.0001137
[9]

Daliakopoulos IN, Tsanis IK, Koutroulis A, Kourgialas NN, Varouchakis AE, et al. 2016. The threat of soil salinity: a European scale review. Science of the Total Environment 573:727−39

doi: 10.1016/j.scitotenv.2016.08.177
[10]

Tüzel Y, Balliu A. 2020. Advances in liquid- and solid-medium soilless culture systems. In Advances in Horticultural Soilless Culture, ed. Gruda NS. Cambridge: Burleigh Dodds Science. 36 pp. doi: 10.1201/9781003048206-10

[11]

Raviv M, Lieth JH, Bar-Tal A, Silber A. 2008. Growing plants in soilless culture: operational conclusions. In Soilless Culture: Theory and Practice, eds. Raviv M, Lieth JH. Amsterdam: Elsevier. pp. 545−79. doi: 10.1016/B978-044452975-6.50015-0

[12]

Hess L, De Kroon H. 2007. Effects of rooting volume and nutrient availability as an alternative explanation for root self/non-self discrimination. Journal of Ecology 95:241−51

doi: 10.1111/j.1365-2745.2006.01204.x
[13]

Balliu A, Zheng Y, Sallaku G, Fernández JA, Gruda NS, et al. 2021. Environmental and cultivation factors affect the morphology, architecture and performance of root systems in soilless grown plants. Horticulturae 7:243

doi: 10.3390/horticulturae7080243
[14]

Sambo P, Nicoletto C, Giro A, Pii Y, Valentinuzzi F, et al. 2019. Hydroponic solutions for soilless production systems: issues and opportunities in a smart agriculture perspective. Frontiers in Plant Science 10:923

doi: 10.3389/fpls.2019.00923
[15]

Mielcarek A, Kłobukowska K, Rodziewicz J, Janczukowicz W, Bryszewski KŁ. 2024. Water nutrient management in soilless plant cultivation versus sustainability. Sustainability 16:152

doi: 10.3390/su16010152
[16]

Krishnamurthy SL, Lokeshkumar BM, Rathor S, Warraich AS, Yadav S, et al. 2022. Development of salt-tolerant rice varieties to enhancing productivity in salt-affected environments. Environmental Sciences Proceedings 16:30

doi: 10.3390/environsciproc2022016030
[17]

Babaj I, Sallaku G, Balliu A. 2014. The effects of endogenous mycorrhiza (Glomus spp.) on plant growth and yield of grafted cucumber (Cucumis sativum L.) under common commercial greenhouse conditions. Albanian Journal of Agricultural Sciences 13:24−28

[18]

Meça E, Sallaku G, Balliu A. 2016. Artificial inoculation of AM fungi improves nutrient uptake efficiency in salt stressed pea (Pissum Sativum L.) plants. Journal of Agricultural Studies 4:37

doi: 10.5296/jas.v4i3.9585
[19]

Veselaj E, Sallaku G, Balliu A. 2018. Tripartite relationships in legume crops are plant-microorganism-specific and strongly influenced by salinity. Agriculture 8:117

doi: 10.3390/agriculture8080117
[20]

Balliu A, Sallaku G, Kuçi S, Çota E, Kaçiu S. 2007. The effect of major nutrients (NPK) on the growth rate of pepper and eggplant seedlings. Acta Horticulturae 729:341−47

doi: 10.17660/actahortic.2007.729.56
[21]

Nazir F, Mahajan M, Khatoon S, Albaqami M, Ashfaque F, et al. 2023. Sustaining nitrogen dynamics: a critical aspect for improving salt tolerance in plants. Frontiers in Plant Science 14:1087946

doi: 10.3389/fpls.2023.1087946
[22]

Balliu A, Vuksani G, Nasto T, Haxhinasto L, Kaçiu S. 2008. Grafting effects on tomato growth rate, yield and fruit quality under saline irrigation water. Acta Horticulturae 801:1161−66

doi: 10.17660/actahortic.2008.801.141
[23]

Bőhm V, Fekete D, Balázs G, Gáspár L, Kappel N. 2017. Salinity tolerance of grafted watermelon seedlings. Acta Biologica Hungarica 68:412−27

doi: 10.1556/018.68.2017.4.7
[24]

Edelstein M, Plaut Z, Ben-Hur M. 2011. Sodium and chloride exclusion and retention by non-grafted and grafted melon and Cucurbita plants. Journal of Experimental Botany 62:177−84

doi: 10.1093/jxb/erq255
[25]

Di Gioia F, Serio F, Buttaro D, Ayala O, Santamaria P. 2010. Influence of rootstock on vegetative growth, fruit yield and quality in 'Cuore di Bue', an heirloom tomato. The Journal of Horticultural Science and Biotechnology 85:477−82

doi: 10.1080/14620316.2010.11512701
[26]

Schwarz D, Öztekin GB, Tüzel Y, Brückner B, Krumbein, A. 2013. Rootstocks can enhance tomato growth and quality characteristics at low potassium supply. Scientia Horticulturae 149:70−79

doi: 10.1016/j.scienta.2012.06.013
[27]

López-Marín J, Gálvez A, del Amor FM, Albacete A, Fernández JA, et al. 2017. Selecting vegetative/generative/dwarfing rootstocks for improving fruit yield and quality in water stressed sweet peppers. Scientia Horticulturae 214:9−17

doi: 10.1016/j.scienta.2016.11.012
[28]

Venema JH, Giuffrida F, Paponov I, Albacete A, Pérez-Alfocea F, et al. 2017. Rootstock-scion signalling: key factors mediating scion performance. In Vegetable Grafting Principles and Practices, eds Colla G, Pérez-Alfocea F, Schwarz D. UK: CAB International. pp. 94–131. doi: 10.1079/9781780648972.0094

[29]

Niu M, Wei L, Peng Y, Huang Y, Bie Z. 2022. Mechanisms of increasing salt resistance of vegetables by grafting. Vegetable Research 2:8

doi: 10.48130/vr-2022-0008
[30]

Balliu A, Babaj I, Sallaku G. 2024. Root morphology parameters and nutrient acquisition capabilities of grafted tomato plants in root-restricted conditions are subject to salinity and rootstock characteristics. International Journal of Vegetable Science 30:503−26

doi: 10.1080/19315260.2024.2383847
[31]

Hunt R. 2003. Growth analysis, individual plants. Growth and development. In Encyclopedia of Applied Plant Sciences, eds Thomas B, Murphy DJ, Murray BG. US: Academic Press. pp. 579–88. doi: 10.1016/B0-12-227050-9/00028-4

[32]

Jain A, Sarsaiya S, Wu Q, Lu Y, Shi J. 2019. A review of plant leaf fungal diseases and its environment speciation. Bioengineered 10:409−24

doi: 10.1080/21655979.2019.1649520
[33]

Goyal RK, Bishnoi C. 2017. Assimilate partitioning and distribution in fruit crops: a review. Journal of Pharmaceutical Phytochemistry 6:479−84

[34]

Quinet M, Angosto T, Yuste-Lisbona FJ, Blanchard-Gros R, Bigot S, et al. 2019. Tomato fruit development and metabolism. Frontiers in Plant Science 10:1554

doi: 10.3389/fpls.2019.01554
[35]

Atkinson C, Else M. 2001. Understanding how rootstocks dwarf fruit trees. The Compact Fruit Tree 34:46−49

[36]

Sallaku G, Rewald B, Sandén H, Balliu A. 2022. Scions impact biomass allocation and root enzymatic activity of rootstocks in grafted melon and watermelon plants. Frontiers in Plant Science 13:949086

doi: 10.3389/fpls.2022.949086
[37]

Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59:651−81

doi: 10.1146/annurev.arplant.59.032607.092911
[38]

Shelden MC, Munns R. 2023. Crop root system plasticity for improved yields in saline soils. Frontiers in Plant Science 14:1120583

doi: 10.3389/fpls.2023.1120583
[39]

Babaj I, Sallaku G, Balliu A. 2014. Splice grafting versus root pruning splice grafting: stand establishment and productivity issues in Cucurbitacea vegetables. Journal of Food, Agriculture & Environment 12:165−68

[40]

Djidonou D, Zhao X, Brecht JK, Cordasco KM. 2017. Influence of interspecific hybrid rootstocks on tomato growth, nutrient accumulation, yield, and fruit composition under greenhouse conditions. HortTechnology 27:868−77

doi: 10.21273/HORTTECH03810-17
[41]

Parisi M, Pentangelo A, D'Alessandro A, Festa G, Francese G, et al. 2023. Grafting effects on bioactive compounds, chemical and agronomic traits of 'Corbarino' tomato grown under greenhouse healthy conditions. Horticultural Plant Journal 9:273−84

doi: 10.1016/j.hpj.2022.03.001
[42]

Gong T, Brecht JK, Hutton SF, Koch KE, Zhao X. 2022. Tomato fruit quality is more strongly affected by scion type and planting season than by rootstock type. Frontiers in Plant Science 13:948556

doi: 10.3389/fpls.2022.948556
[43]

Djidonou D, Leskovar DI, Joshi M, Jifon J, Avila CA, et al. 2020. Stability of yield and its components in grafted tomato tested across multiple environments in Texas. Scientific Reports 10:13535

doi: 10.1038/s41598-020-70548-3
[44]

Kumar P, Rouphael Y, Cardarelli M, Colla G. 2017. Vegetable grafting as a tool to improve drought resistance and water use efficiency. Frontiers in Plant Science 8:1130

doi: 10.3389/fpls.2017.01130
[45]

Silber, A, Xu G, Wallach R. 2003. High irrigation frequency: the effect on plant growth and on uptake of water and nutrients. Acta Horticulturae 627:89−96

doi: 10.17660/actahortic.2003.627.10
[46]

Savvas D, Gianquinto G, Tuzel Y, Gruda N. 2013. Soilless culture. In Good Agricultural Practices for Greenhouse Vegetable Crops. Principles for Mediterranean Climate Areas. Italy: FAO. pp. 303–55. www.fao.org/4/i3284e/i3284e.pdf

[47]

Gong T, Brecht JK, Koch KE, Hutton SF, Zhao X. 2022. A systematic assessment of how rootstock growth characteristics impact grafted tomato plant biomass, resource partitioning, yield, and fruit mineral composition. Frontiers in Plant Science 13:948656

doi: 10.3389/fpls.2022.948656
[48]

Turhan A, Ozmen N, Serbeci MS, Seniz V. 2011. Effects of grafting on different rootstocks on tomato fruit yield and quality. Horticultural Science 38:142−49

doi: 10.17221/51/2011-HORTSCI
[49]

Djidonou D, Simonne AH, Koch KE, Brecht JK, Zhao X. 2016. Nutritional quality of field-grown tomato fruit as affected by grafting with interspecific hybrid rootstocks. HortScience 51:1618−24

doi: 10.21273/HORTSCI11275-16