[1]

Tham YC, Li X, Wong TY, Quigley HA, Aung T, et al. 2014. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121:2081−90

doi: 10.1016/j.ophtha.2014.05.013
[2]

Weinreb RN, Aung T, Medeiros FA. 2014. The pathophysiology and treatment of glaucoma: a review. JAMA 311:1901−11

doi: 10.1001/jama.2014.3192
[3]

Zhu X, Hong J, Zhou X. 2023. Biological immune mechanism of retina. Frontiers in Bioscience 28:363

doi: 10.31083/j.fbl2812363
[4]

Naskar R, Wissing M, Thanos S. 2002. Detection of early neuron degeneration and accompanying microglial responses in the retina of a rat model of glaucoma. Investigative Ophthalmology & Visual Science 43:2962−8

[5]

Sun D, Qu J, Jakobs TC. 2013. Reversible reactivity by optic nerve astrocytes. Glia 61:1218−35

doi: 10.1002/glia.22507
[6]

Rodríguez-Gómez JA, Kavanagh E, Engskog-Vlachos P, Engskog MKR, Herrera AJ, et al. 2020. Microglia: agents of the CNS pro-inflammatory response. Cells 9:1717

doi: 10.3390/cells9071717
[7]

Jassim AH, Inman DM, Mitchell CH. 2021. Crosstalk between dysfunctional mitochondria and inflammation in glaucomatous neurodegeneration. Frontiers in Pharmacology 12:699623

doi: 10.3389/fphar.2021.699623
[8]

Hu X, Zhao GL, Xu MX, Zhou H, Li F, et al. 2021. Interplay between Müller cells and microglia aggravates retinal inflammatory response in experimental glaucoma. Journal of Neuroinflammation 18:303

doi: 10.1186/s12974-021-02366-x
[9]

Wang J, He W, Zhang J. 2023. A richer and more diverse future for microglia phenotypes. Heliyon 9:e14713

doi: 10.1016/j.heliyon.2023.e14713
[10]

Bosco A, Romero CO, Breen KT, Chagovetz AA, Steele MR, et al. 2015. Neurodegeneration severity can be predicted from early microglia alterations monitored in vivo in a mouse model of chronic glaucoma. Disease Models & Mechanisms 8:443−55

doi: 10.1242/dmm.018788
[11]

Ramírez AI, de Hoz R, Fernández-Albarral JA, Salobrar-Garcia E, Rojas B, et al. 2020. Time course of bilateral microglial activation in a mouse model of laser-induced glaucoma. Scientific Reports 10:4890

doi: 10.1038/s41598-020-61848-9
[12]

Qi Y, Zhao M, Bai Y, Huang L, Yu W, et al. 2014. Retinal ischemia/reperfusion injury is mediated by Toll-like receptor 4 activation of NLRP3 inflammasomes. Investigative Ophthalmology & Visual Science 55:5466−75

doi: 10.1167/iovs.14-14380
[13]

Chen H, Deng Y, Gan X, Li Y, Huang W, et al. 2020. NLRP12 collaborates with NLRP3 and NLRC4 to promote pyroptosis inducing ganglion cell death of acute glaucoma. Molecular Neurodegeneration 15:26

doi: 10.1186/s13024-020-00372-w
[14]

Wagner N, Reinehr S, Palmhof M, Schuschel D, Tsai T, et al. 2021. Microglia activation in retinal ischemia triggers cytokine and Toll-like receptor response. Journal of Molecular Neuroscience 71:527−44

doi: 10.1007/s12031-020-01674-w
[15]

Sheng S, Ma Y, Zou Y, Hu F, Chen L. 2023. Protective effects of blocking PD-1 pathway on retinal ganglion cells in a mouse model of chronic ocular hypertension. Frontiers in Immunology 13:1094132

doi: 10.3389/fimmu.2022.1094132
[16]

Cui QN, Stein LM, Fortin SM, Hayes MR. 2022. The role of glia in the physiology and pharmacology of glucagon-like peptide-1: implications for obesity, diabetes, neurodegeneration and glaucoma. British Journal of Pharmacology 179:715−26

doi: 10.1111/bph.15683
[17]

Wei X, Cho KS, Thee EF, Jager MJ, Chen DF. 2019. Neuroinflammation and microglia in glaucoma: time for a paradigm shift. Journal of Neuroscience Research 97:70−76

doi: 10.1002/jnr.24256
[18]

Chen D, Peng C, Ding XM, Wu Y, Zeng CJ, et al. 2022. Interleukin-4 promotes microglial polarization toward a neuroprotective phenotype after retinal ischemia/reperfusion injury. Neural Regeneration Research 17:2755−60

doi: 10.4103/1673-5374.339500
[19]

Gao C, Jiang J, Tan Y, Chen S. 2023. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduction and Targeted Therapy 8:359

doi: 10.1038/s41392-023-01588-0
[20]

Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, et al. 2017. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47:566−581.e9

doi: 10.1016/j.immuni.2017.08.008
[21]

Maurya S, Lin M, Karnam S, Singh T, Kumar M, et al. 2024. Regulation of disease-associated microglia in the optic nerve by lipoxin B4 and ocular hypertension. Molecular Neurodegeneration 19:86

doi: 10.1186/s13024-024-00775-z
[22]

Margeta MA, Yin Z, Madore C, Pitts KM, Letcher SM, et al. 2022. Apolipoprotein E4 impairs the response of neurodegenerative retinal microglia and prevents neuronal loss in glaucoma. Immunity 55:1627−1644.e7

doi: 10.1016/j.immuni.2022.07.014
[23]

Bosco A, Steele MR, Vetter ML. 2011. Early microglia activation in a mouse model of chronic glaucoma. Journal of Comparative Neurology 519:599−620

doi: 10.1002/cne.22516
[24]

Xu MX, Zhao GL, Hu X, Zhou H, Li SY, et al. 2022. P2X7/P2X4 receptors mediate proliferation and migration of retinal microglia in experimental glaucoma in mice. Neuroscience Bulletin 38:901−15

doi: 10.1007/s12264-022-00833-w
[25]

Zhang Y, Xu Y, Sun Q, Xue S, Guan H, et al. 2019. Activation of P2X7R- NLRP3 pathway in Retinal microglia contribute to Retinal Ganglion Cells death in chronic ocular hypertension (COH). Experimental Eye Research 188:107771

doi: 10.1016/j.exer.2019.107771
[26]

Calvo M, Zhu N, Grist J, Ma Z, Loeb JA, et al. 2011. Following nerve injury neuregulin-1 drives microglial proliferation and neuropathic pain via the MEK/ERK pathway. Glia 59:554−68

doi: 10.1002/glia.21124
[27]

Ahmad I, Subramani M. 2022. Microglia: friends or foes in glaucoma? A developmental perspective. Stem Cells Translational Medicine 11:1210−18

doi: 10.1093/stcltm/szac077
[28]

Rodrigues-Neves AC, Aires ID, Vindeirinho J, Boia R, Madeira MH, et al. 2018. Elevated pressure changes the purinergic system of microglial cells. Frontiers in Pharmacology 9:16

doi: 10.3389/fphar.2018.00016
[29]

Xavier AL, Menezes JRL, Goldman SA, Nedergaard M. 2014. Fine-tuning the central nervous system: microglial modelling of cells and synapses. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 369:20130593

doi: 10.1098/rstb.2013.0593
[30]

Luo J, Lian Q, Zhu D, Zhao M, Mei T, et al. 2023. PLSCR1 promotes apoptosis and clearance of retinal ganglion cells in glaucoma pathogenesis. Genes & Diseases 10:1564−81

doi: 10.1016/j.gendis.2022.05.036
[31]

Mathew B, Torres LA, Gamboa Acha L, Tran S, Liu A, et al. 2021. Uptake and distribution of administered bone marrow mesenchymal stem cell extracellular vesicles in retina. Cells 10:730

doi: 10.3390/cells10040730
[32]

Aires ID, Ribeiro-Rodrigues T, Boia R, Catarino S, Girão H, et al. 2020. Exosomes derived from microglia exposed to elevated pressure amplify the neuroinflammatory response in retinal cells. Glia 68:2705−24

doi: 10.1002/glia.23880
[33]

Yu Z, Wen Y, Jiang N, Li Z, Guan J, et al. 2022. TNF-α stimulation enhances the neuroprotective effects of gingival MSCs derived exosomes in retinal ischemia-reperfusion injury via the MEG3/miR-21a-5p axis. Biomaterials 284:121484

doi: 10.1016/j.biomaterials.2022.121484
[34]

Breen KT, Anderson SR, Steele MR, Calkins DJ, Bosco A, et al. 2016. Loss of fractalkine signaling exacerbates axon transport dysfunction in a chronic model of glaucoma. Frontiers in Neuroscience 10:526

doi: 10.3389/fnins.2016.00526
[35]

Wang K, Peng B, Lin B. 2014. Fractalkine receptor regulates microglial neurotoxicity in an experimental mouse glaucoma model. Glia 62:1943−54

doi: 10.1002/glia.22715
[36]

Tan Z, Guo Y, Shrestha M, Sun D, Gregory-Ksander M, et al. 2022. Microglia depletion exacerbates retinal ganglion cell loss in a mouse model of glaucoma. Experimental Eye Research 225:109273

doi: 10.1016/j.exer.2022.109273
[37]

Fernández-Albarral JA, de Hoz R, Matamoros JA, Chen L, López-Cuenca I, et al. 2022. Retinal changes in astrocytes and Müller glia in a mouse model of laser-induced glaucoma: a time-course study. Biomedicines 10:939

doi: 10.3390/biomedicines10050939
[38]

Liu YX, Sun H, Guo WY. 2022. Astrocyte polarization in glaucoma: a new opportunity. Neural Regeneration Research 17:2582−88

doi: 10.4103/1673-5374.339470
[39]

Saada J, McAuley RJ, Marcatti M, Tang TZ, Motamedi M, et al. 2022. Oxidative stress induces Z-DNA-binding protein 1-dependent activation of microglia via mtDNA released from retinal pigment epithelial cells. Journal of Biological Chemistry 298:101523

doi: 10.1016/j.jbc.2021.101523
[40]

Grotegut P, Kuehn S, Meißner W, Dick HB, Joachim SC. 2020. Intravitreal S100B injection triggers a time-dependent microglia response in a pro-inflammatory manner in retina and optic nerve. Molecular Neurobiology 57:1186−202

doi: 10.1007/s12035-019-01786-4
[41]

Bianchi R, Giambanco I, Donato R. 2010. S100B/RAGE-dependent activation of microglia via NF-κB and AP-1 Co-regulation of COX-2 expression by S100B, IL-1β and TNF-α. Neurobiology of Aging 31:665−77

doi: 10.1016/j.neurobiolaging.2008.05.017
[42]

Ramírez AI, Fernández-Albarral JA, Hoz R, López-Cuenca I, Salobrar-García E, et al. 2020. Microglial changes in the early aging stage in a healthy retina and an experimental glaucoma model. Progress in Brain Research 256:125−49

doi: 10.1016/bs.pbr.2020.05.024
[43]

Silverman SM, Wong WT. 2018. Microglia in the retina: roles in development, maturity, and disease. Annual Review of Vision Science 4:45−77

doi: 10.1146/annurev-vision-091517-034425
[44]

Shi J, Gao W, Shao F. 2017. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends in Biochemical Sciences 42:245−54

doi: 10.1016/j.tibs.2016.10.004
[45]

Yang Y, Wang N, Xu L, Liu Y, Huang L, et al. 2023. Aryl hydrocarbon receptor dependent anti-inflammation and neuroprotective effects of tryptophan metabolites on retinal ischemia/reperfusion injury. Cell Death & Disease 14:92

doi: 10.1038/s41419-023-05616-3
[46]

Tezel G. 2022. Molecular regulation of neuroinflammation in glaucoma: current knowledge and the ongoing search for new treatment targets. Progress in Retinal and Eye Research 87:100998

doi: 10.1016/j.preteyeres.2021.100998
[47]

Yang X, Zeng Q, Barış M, Tezel G. 2020. Transgenic inhibition of astroglial NF-κB restrains the neuroinflammatory and neurodegenerative outcomes of experimental mouse glaucoma. Journal of Neuroinflammation 17:252

doi: 10.1186/s12974-020-01930-1
[48]

Harari OA, Liao JK. 2010. NF-κB and innate immunity in ischemic stroke. Annals of the New York Academy of Sciences 1207:32−40

doi: 10.1111/j.1749-6632.2010.05735.x
[49]

Wang Y, Chen S, Wang J, Liu Y, Chen Y, et al. 2021. MicroRNA-93/STAT3 signalling pathway mediates retinal microglial activation and protects retinal ganglion cells in an acute ocular hypertension model. Cell Death & Disease 12:41

doi: 10.1038/s41419-020-03337-5
[50]

Wan P, Su W, Zhang Y, Li Z, Deng C, et al. 2020. LncRNA H19 initiates microglial pyroptosis and neuronal death in retinal ischemia/reperfusion injury. Cell Death & Differentiation 27:176−91

doi: 10.1038/s41418-019-0351-4
[51]

Illes P, Rubini P, Ulrich H, Zhao Y, Tang Y. 2020. Regulation of microglial functions by purinergic mechanisms in the healthy and diseased CNS. Cells 9:1108

doi: 10.3390/cells9051108
[52]

Pietrowski MJ, Gabr AA, Kozlov S, Blum D, Halle A, et al. 2021. Glial purinergic signaling in neurodegeneration. Frontiers in Neurology 12:654850

doi: 10.3389/fneur.2021.654850
[53]

Ho T, Vessey KA, Fletcher EL. 2014. Immunolocalization of the P2X4 receptor on neurons and glia in the mammalian retina. Neuroscience 277:55−71

doi: 10.1016/j.neuroscience.2014.06.055
[54]

Romano GL, Amato R, Lazzara F, Porciatti V, Chou TH, et al. 2020. P2X7 receptor antagonism preserves retinal ganglion cells in glaucomatous mice. Biochemical Pharmacology 180:114199

doi: 10.1016/j.bcp.2020.114199
[55]

Shinozaki Y, Koizumi S. 2021. Potential roles of astrocytes and Müller cells in the pathogenesis of glaucoma. Journal of Pharmacological Sciences 145:262−67

doi: 10.1016/j.jphs.2020.12.009
[56]

Li Q, Cheng Y, Zhang S, Sun X, Wu J. 2021. TRPV4-induced Müller cell gliosis and TNF-α elevation-mediated retinal ganglion cell apoptosis in glaucomatous rats via JAK2/STAT3/NF-κB pathway. Journal of Neuroinflammation 18:271

doi: 10.1186/s12974-021-02315-8
[57]

Cui Y, Zhang Y, Zhao X, Shao L, Liu G, et al. 2021. ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain, Behavior, and Immunity 93:312−21

doi: 10.1016/j.bbi.2021.01.003
[58]

Husain S, Liou GI, Crosson CE. 2011. Opioid receptor activation: suppression of ischemia/reperfusion-induced production of TNF-α in the retina. Investigative Ophthalmology & Visual Science 52:2577−83

doi: 10.1167/iovs.10-5629
[59]

Voigt J, Grosche A, Vogler S, Pannicke T, Hollborn M, et al. 2015. Nonvesicular release of ATP from rat retinal glial (Müller) cells is differentially mediated in response to osmotic stress and glutamate. Neurochemical Research 40:651−60

doi: 10.1007/s11064-014-1511-z
[60]

Xue B, Xie Y, Xue Y, Hu N, Zhang G, et al. 2016. Involvement of P2X7 receptors in retinal ganglion cell apoptosis induced by activated Müller cells. Experimental Eye Research 153:42−50

doi: 10.1016/j.exer.2016.10.005
[61]

Gao F, Li F, Miao Y, Dong LD, Zhang SH, et al. 2015. Group I metabotropic glutamate receptor agonist DHPG modulates Kir4.1 protein and mRNA in cultured rat retinal Müller cells. Neuroscience Letters 588:12−17

doi: 10.1016/j.neulet.2014.12.048
[62]

Ji M, Miao Y, Dong LD, Chen J, Mo XF, et al. 2012. Group I mGluR-mediated inhibition of Kir channels contributes to retinal Müller cell gliosis in a rat chronic ocular hypertension model. The Journal of Neuroscience 32:12744−55

doi: 10.1523/JNEUROSCI.1291-12.2012
[63]

Harun-Or-Rashid M, Inman DM. 2018. Reduced AMPK activation and increased HCAR activation drive anti-inflammatory response and neuroprotection in glaucoma. Journal of Neuroinflammation 15:313

doi: 10.1186/s12974-018-1346-7
[64]

Sapienza A, Raveu AL, Reboussin E, Roubeix C, Boucher C, et al. 2016. Bilateral neuroinflammatory processes in visual pathways induced by unilateral ocular hypertension in the rat. Journal of Neuroinflammation 13:44

doi: 10.1186/s12974-016-0509-7
[65]

Ohsawa K, Irino Y, Nakamura Y, Akazawa C, Inoue K, et al. 2007. Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis. Glia 55:604−16

doi: 10.1002/glia.20489
[66]

Tsao HK, Chiu PH, Sun SH. 2013. PKC-dependent ERK phosphorylation is essential for P2X7 receptor-mediated neuronal differentiation of neural progenitor cells. Cell Death & Disease 4:e751

doi: 10.1038/cddis.2013.274
[67]

Zhao X, Sun R, Luo X, Wang F, Sun X. 2021. The interaction between microglia and macroglia in glaucoma. Frontiers in Neuroscience 15:610788

doi: 10.3389/fnins.2021.610788
[68]

Wang M, Ma W, Zhao L, Fariss RN, Wong WT. 2011. Adaptive Müller cell responses to microglial activation mediate neuroprotection and coordinate inflammation in the retina. Journal of Neuroinflammation 8:173

doi: 10.1186/1742-2094-8-173
[69]

Sánchez-López A, Cuadros MA, Calvente R, Tassi M, Marín-Teva JL, et al. 2004. Radial migration of developing microglial cells in quail retina: a confocal microscopy study. Glia 46:261−73

doi: 10.1002/glia.20007
[70]

Hu X, Xu MX, Zhou H, Cheng S, Li F, et al. 2020. Tumor necrosis factor-alpha aggravates gliosis and inflammation of activated retinal Müller cells. Biochemical and Biophysical Research Communications 531:383−89

doi: 10.1016/j.bbrc.2020.07.102
[71]

Wang M, Wong WT. 2014. Microglia-Müller cell interactions in the retina. Advances in Experimental Medicine and Biology 801:333−8

doi: 10.1007/978-1-4614-3209-8_42
[72]

Natoli R, Fernando N, Madigan M, Chu-Tan JA, Valter K, et al. 2017. Microglia-derived IL-1β promotes chemokine expression by Müller cells and RPE in focal retinal degeneration. Molecular Neurodegeneration 12:31

doi: 10.1186/s13024-017-0175-y
[73]

Harada T, Harada C, Kohsaka S, Wada E, Yoshida K, et al. 2002. Microglia-Müller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration. The Journal of Neuroscience 22:9228−36

doi: 10.1523/JNEUROSCI.22-21-09228.2002
[74]

Yu H, Zhong H, Sun J, Li N, Chen J, et al. 2023. Molecular signaling from microglia impacts macroglia autophagy and neurons survival in glaucoma. iScience 26:106839

doi: 10.1016/j.isci.2023.106839
[75]

Reichenbach A, Bringmann A. 2020. Glia of the human retina. Glia 68:768−96

doi: 10.1002/glia.23727
[76]

Yun SP, Kam TI, Panicker N, Kim S, Oh Y, et al. 2018. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nature Medicine 24:931−38

doi: 10.1038/s41591-018-0051-5
[77]

Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, et al. 2017. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481−87

doi: 10.1038/nature21029
[78]

Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, et al. 2012. Genomic analysis of reactive astrogliosis. The Journal of Neuroscience 32:6391−410

doi: 10.1523/JNEUROSCI.6221-11.2012
[79]

Kimball E, Schaub J, Quillen S, Keuthan C, Pease ME, et al. 2021. The role of aquaporin-4 in optic nerve head astrocytes in experimental glaucoma. PLoS One 16:e0244123

doi: 10.1371/journal.pone.0244123
[80]

Sterling JK, Adetunji MO, Guttha S, Bargoud AR, Uyhazi KE, et al. 2020. GLP-1 receptor agonist NLY01 reduces retinal inflammation and neuron death secondary to ocular hypertension. Cell Reports 33:108271

doi: 10.1016/j.celrep.2020.108271
[81]

Guttenplan KA, Stafford BK, El-Danaf RN, Adler DI, Münch AE, et al. 2020. Neurotoxic reactive astrocytes drive neuronal death after retinal injury. Cell Reports 31:107776

doi: 10.1016/j.celrep.2020.107776
[82]

Joshi AU, Minhas PS, Liddelow SA, Haileselassie B, Andreasson KI, et al. 2019. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nature Neuroscience 22:1635−48

doi: 10.1038/s41593-019-0486-0
[83]

Lee SC, Dickson DW, Brosnan CF. 1995. Interleukin-1, nitric oxide and reactive astrocytes. Brain, Behavior, and Immunity 9:345−54

doi: 10.1006/brbi.1995.1032
[84]

Wiemann S, Reinhard J, Reinehr S, Cibir Z, Joachim SC, et al. 2020. Loss of the extracellular matrix molecule tenascin-C leads to absence of reactive gliosis and promotes anti-inflammatory cytokine expression in an autoimmune glaucoma mouse model. Frontiers in Immunology 11:566279

doi: 10.3389/fimmu.2020.566279
[85]

Wiemann S, Reinhard J, Faissner A. 2019. Immunomodulatory role of the extracellular matrix protein tenascin-C in neuroinflammation. Biochemical Society Transactions 47:1651−60

doi: 10.1042/BST20190081
[86]

Claycomb KI, Winokur PN, Johnson KM, Nicaise AM, Giampetruzzi AW, et al. 2014. Aberrant production of tenascin-C in globoid cell leukodystrophy alters psychosine-induced microglial functions. Journal of Neuropathology and Experimental Neurology 73:964−74

doi: 10.1097/NEN.0000000000000117
[87]

Beckel JM, Argall AJ, Lim JC, Xia J, Lu W, et al. 2014. Mechanosensitive release of adenosine 5’-triphosphate through pannexin channels and mechanosensitive upregulation of pannexin channels in optic nerve head astrocytes: a mechanism for purinergic involvement in chronic strain. Glia 62:1486−501

doi: 10.1002/glia.22695
[88]

Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, et al. 2005. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience 8:752−58

doi: 10.1038/nn1472
[89]

Bianco F, Pravettoni E, Colombo A, Schenk U, Möller T, et al. 2005. Astrocyte-derived ATP induces vesicle shedding and IL-1β release from microglia. Journal of Immunology 174:7268−77

doi: 10.4049/jimmunol.174.11.7268
[90]

Litvinchuk A, Wan YW, Swartzlander DB, Chen F, Cole A, et al. 2018. Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer's disease. Neuron 100:1337−1353.e5

doi: 10.1016/j.neuron.2018.10.031
[91]

Harder JM, Williams PA, Braine CE, Yang HS, Thomas JM, et al. 2020. Complement peptide C3a receptor 1 promotes optic nerve degeneration in DBA/2J mice. Journal of Neuroinflammation 17:336

doi: 10.1186/s12974-020-02011-z
[92]

Reinehr S, Reinhard J, Gandej M, Gottschalk I, Stute G, et al. 2018. S100B immunization triggers NF-κB and complement activation in an autoimmune glaucoma model. Scientific Reports 8:9821

doi: 10.1038/s41598-018-28183-6
[93]

Ma Y, Wang J, Wang Y, Yang GY. 2017. The biphasic function of microglia in ischemic stroke. Progress in Neurobiology 157:247−72

doi: 10.1016/j.pneurobio.2016.01.005
[94]

Dumbrăveanu L, Cușnir V, Bobescu D. 2021. A review of neovascular glaucoma. Etiopathogenesis and treatment. Romanian Journal of Ophthalmology 65:315−29

doi: 10.22336/rjo.2021.66
[95]

Wang G, Zhang J, Hu X, Zhang L, Mao L, et al. 2013. Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism 33:1864−74

doi: 10.1038/jcbfm.2013.146
[96]

Qu J, Jakobs TC. 2013. The time course of gene expression during reactive gliosis in the optic nerve. PLoS One 8:e67094

doi: 10.1371/journal.pone.0067094
[97]

García-Bermúdez MY, Freude KK, Mouhammad ZA, van Wijngaarden P, Martin KK, et al. 2021. Glial cells in glaucoma: friends, foes, and potential therapeutic targets. Frontiers in Neurology 12:624983

doi: 10.3389/fneur.2021.624983
[98]

Ma W, Zhao L, Fontainhas AM, Fariss RN, Wong WT. 2009. Microglia in the mouse retina alter the structure and function of retinal pigmented epithelial cells: a potential cellular interaction relevant to AMD. PLoS One 4:e7945

doi: 10.1371/journal.pone.0007945
[99]

Ma W, Wong WT. 2016. Aging changes in retinal microglia and their relevance to age-related retinal disease. Advances in Experimental Medicine and Biology 854:73−78

doi: 10.1007/978-3-319-17121-0_11
[100]

Schubert T, Gleiser C, Heiduschka P, Franz C, Nagel-Wolfrum K, et al. 2015. Deletion of myosin VI causes slow retinal optic neuropathy and age-related macular degeneration (AMD)-relevant retinal phenotype. Cellular and Molecular Life Sciences 72:3953−69

doi: 10.1007/s00018-015-1913-3
[101]

Weisschuh N, Neumann D, Wolf C, Wissinger B, Gramer E. 2005. Prevalence of myocilin and optineurin sequence variants in German normal tension glaucoma patients. Molecular Vision 11:284−87

[102]

Sahlender DA, Roberts RC, Arden SD, Spudich G, Taylor MJ, et al. 2005. Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. The Journal of Cell Biology 169:285−95

doi: 10.1083/jcb.200501162
[103]

Rahimian R, Perlman K, Canonne C, Mechawar N. 2022. Targeting microglia–oligodendrocyte crosstalk in neurodegenerative and psychiatric disorders. Drug Discovery Today 27:2562−73

doi: 10.1016/j.drudis.2022.06.015
[104]

Grotegut P, Kuehn S, Dick HB, Joachim SC. 2020. Destructive effect of intravitreal heat shock protein 27 application on retinal ganglion cells and neurofilament. International Journal of Molecular Sciences 21:549

doi: 10.3390/ijms21020549
[105]

Murakami Y, Notomi S, Hisatomi T, Nakazawa T, Ishibashi T, et al. 2013. Photoreceptor cell death and rescue in retinal detachment and degenerations. Progress in Retinal and Eye Research 37:114−40

doi: 10.1016/j.preteyeres.2013.08.001
[106]

Okunuki Y, Mukai R, Pearsall EA, Klokman G, Husain D, et al. 2018. Microglia inhibit photoreceptor cell death and regulate immune cell infiltration in response to retinal detachment. Proceedings of the National Academy of Sciences of the United States of America 115:E6264−E6273

doi: 10.1073/pnas.1719601115
[107]

Karlstetter M, Scholz R, Rutar M, Wong WT, Provis JM, et al. 2015. Retinal microglia: just bystander or target for therapy? Progress in Retinal and Eye Research 45:30−57

doi: 10.1016/j.preteyeres.2014.11.004
[108]

Zeng HL, Shi JM. 2018. The role of microglia in the progression of glaucomatous neurodegeneration - a review. International Journal of Ophthalmology 11:143−49

doi: 10.18240/ijo.2018.01.22
[109]

Zeng H, Ding M, Chen XX, Lu Q. 2014. Microglial NADPH oxidase activation mediates rod cell death in the retinal degeneration in rd mice. Neuroscience 275:54−61

doi: 10.1016/j.neuroscience.2014.05.065
[110]

de Hoz R, Ramírez AI, González-Martín R, Ajoy D, Rojas B, et al. 2018. Bilateral early activation of retinal microglial cells in a mouse model of unilateral laser-induced experimental ocular hypertension. Experimental Eye Research 171:12−29

doi: 10.1016/j.exer.2018.03.006
[111]

Rojas B, Gallego BI, Ramírez AI, Salazar JJ, de Hoz R, et al. 2014. Microglia in mouse retina contralateral to experimental glaucoma exhibit multiple signs of activation in all retinal layers. Journal of Neuroinflammation 11:133

doi: 10.1186/1742-2094-11-133
[112]

Akopian A, Kumar S, Ramakrishnan H, Viswanathan S, Bloomfield SA. 2019. Amacrine cells coupled to ganglion cells via gap junctions are highly vulnerable in glaucomatous mouse retinas. Journal of Comparative Neurology 527:159−73

doi: 10.1002/cne.24074
[113]

Cuenca N, Pinilla I, Fernández-Sánchez L, Salinas-Navarro M, Alarcón-Martínez L, et al. 2010. Changes in the inner and outer retinal layers after acute increase of the intraocular pressure in adult albino Swiss mice. Experimental Eye Research 91:273−85

doi: 10.1016/j.exer.2010.05.020
[114]

Hernandez M, Rodriguez FD, Sharma SC, Vecino E. 2009. Immunohistochemical changes in rat retinas at various time periods of elevated intraocular pressure. Molecular Vision 15:2696−709

[115]

Moon JI, Kim IB, Gwon JS, Park MH, Kang TH, et al. 2005. Changes in retinal neuronal populations in the DBA/2J mouse. Cell and Tissue Research 320:51−59

doi: 10.1007/s00441-004-1062-8
[116]

Zhu Y, Li SY, Zhang LJ, Lei B, Wang YC, et al. 2024. Neuroprotection of the P2X7 receptor antagonist A740003 on retinal ganglion cells in experimental glaucoma. Neuroreport 35:822−31

doi: 10.1097/WNR.0000000000002071
[117]

Fernández-Albarral JA, Martínez-Lopóz MA, Marco EM, de Hoz R, Martín-Sánchez B, et al. 2021. Is saffron able to prevent the dysregulation of retinal cytokines induced by ocular hypertension in mice? Journal of Clinical Medicine 10:4801

doi: 10.3390/jcm10214801
[118]

Dong N, Dong Z, Chen Y, Gu X. 2020. Crocetin alleviates inflammation in MPTP-induced Parkinson’s disease models through improving mitochondrial functions. Parkinson's Disease 2020:9864370

doi: 10.1155/2020/9864370
[119]

Fernández-Albarral JA, Ramírez AI, de Hoz R, López-Villarín N, Salobrar-García E, et al. 2019. Neuroprotective and anti-inflammatory effects of a hydrophilic saffron extract in a model of glaucoma. International Journal of Molecular Sciences 20:4110

doi: 10.3390/ijms20174110
[120]

Sato K, Ohno-Oishi M, Yoshida M, Sato T, Aizawa T, et al. 2023. The GPR84 molecule is a mediator of a subpopulation of retinal microglia that promote TNF/IL-1α expression via the rho-ROCK pathway after optic nerve injury. Glia 71:2609−22

doi: 10.1002/glia.24442
[121]

Gosselin D, Skola D, Coufal NG, Holtman IR, Schlachetzki JCM, et al. 2017. An environment-dependent transcriptional network specifies human microglia identity. Science 356:eaal3222

doi: 10.1126/science.aal3222
[122]

Usui-Ouchi A, Giles S, Harkins-Perry S, Mills EA, Bonelli R, et al. 2023. Integrating human iPSC-derived macrophage progenitors into retinal organoids to generate a mature retinal microglial niche. Glia 71:2372−82

doi: 10.1002/glia.24428