| [1] |
Tham YC, Li X, Wong TY, Quigley HA, Aung T, et al. 2014. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. |
| [2] |
Weinreb RN, Aung T, Medeiros FA. 2014. The pathophysiology and treatment of glaucoma: a review. |
| [3] |
Zhu X, Hong J, Zhou X. 2023. Biological immune mechanism of retina. |
| [4] |
Naskar R, Wissing M, Thanos S. 2002. Detection of early neuron degeneration and accompanying microglial responses in the retina of a rat model of glaucoma. Investigative Ophthalmology & Visual Science 43:2962−8 |
| [5] |
Sun D, Qu J, Jakobs TC. 2013. Reversible reactivity by optic nerve astrocytes. |
| [6] |
Rodríguez-Gómez JA, Kavanagh E, Engskog-Vlachos P, Engskog MKR, Herrera AJ, et al. 2020. Microglia: agents of the CNS pro-inflammatory response. |
| [7] |
Jassim AH, Inman DM, Mitchell CH. 2021. Crosstalk between dysfunctional mitochondria and inflammation in glaucomatous neurodegeneration. |
| [8] |
Hu X, Zhao GL, Xu MX, Zhou H, Li F, et al. 2021. Interplay between Müller cells and microglia aggravates retinal inflammatory response in experimental glaucoma. |
| [9] |
Wang J, He W, Zhang J. 2023. A richer and more diverse future for microglia phenotypes. |
| [10] |
Bosco A, Romero CO, Breen KT, Chagovetz AA, Steele MR, et al. 2015. Neurodegeneration severity can be predicted from early microglia alterations monitored in vivo in a mouse model of chronic glaucoma. |
| [11] |
Ramírez AI, de Hoz R, Fernández-Albarral JA, Salobrar-Garcia E, Rojas B, et al. 2020. Time course of bilateral microglial activation in a mouse model of laser-induced glaucoma. |
| [12] |
Qi Y, Zhao M, Bai Y, Huang L, Yu W, et al. 2014. Retinal ischemia/reperfusion injury is mediated by Toll-like receptor 4 activation of NLRP3 inflammasomes. |
| [13] |
Chen H, Deng Y, Gan X, Li Y, Huang W, et al. 2020. NLRP12 collaborates with NLRP3 and NLRC4 to promote pyroptosis inducing ganglion cell death of acute glaucoma. |
| [14] |
Wagner N, Reinehr S, Palmhof M, Schuschel D, Tsai T, et al. 2021. Microglia activation in retinal ischemia triggers cytokine and Toll-like receptor response. |
| [15] |
Sheng S, Ma Y, Zou Y, Hu F, Chen L. 2023. Protective effects of blocking PD-1 pathway on retinal ganglion cells in a mouse model of chronic ocular hypertension. |
| [16] |
Cui QN, Stein LM, Fortin SM, Hayes MR. 2022. The role of glia in the physiology and pharmacology of glucagon-like peptide-1: implications for obesity, diabetes, neurodegeneration and glaucoma. |
| [17] |
Wei X, Cho KS, Thee EF, Jager MJ, Chen DF. 2019. Neuroinflammation and microglia in glaucoma: time for a paradigm shift. |
| [18] |
Chen D, Peng C, Ding XM, Wu Y, Zeng CJ, et al. 2022. Interleukin-4 promotes microglial polarization toward a neuroprotective phenotype after retinal ischemia/reperfusion injury. |
| [19] |
Gao C, Jiang J, Tan Y, Chen S. 2023. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. |
| [20] |
Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, et al. 2017. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. |
| [21] |
Maurya S, Lin M, Karnam S, Singh T, Kumar M, et al. 2024. Regulation of disease-associated microglia in the optic nerve by lipoxin B4 and ocular hypertension. |
| [22] |
Margeta MA, Yin Z, Madore C, Pitts KM, Letcher SM, et al. 2022. Apolipoprotein E4 impairs the response of neurodegenerative retinal microglia and prevents neuronal loss in glaucoma. |
| [23] |
Bosco A, Steele MR, Vetter ML. 2011. Early microglia activation in a mouse model of chronic glaucoma. |
| [24] |
Xu MX, Zhao GL, Hu X, Zhou H, Li SY, et al. 2022. P2X7/P2X4 receptors mediate proliferation and migration of retinal microglia in experimental glaucoma in mice. |
| [25] |
Zhang Y, Xu Y, Sun Q, Xue S, Guan H, et al. 2019. Activation of P2X7R- NLRP3 pathway in Retinal microglia contribute to Retinal Ganglion Cells death in chronic ocular hypertension (COH). |
| [26] |
Calvo M, Zhu N, Grist J, Ma Z, Loeb JA, et al. 2011. Following nerve injury neuregulin-1 drives microglial proliferation and neuropathic pain via the MEK/ERK pathway. |
| [27] |
Ahmad I, Subramani M. 2022. Microglia: friends or foes in glaucoma? A developmental perspective. |
| [28] |
Rodrigues-Neves AC, Aires ID, Vindeirinho J, Boia R, Madeira MH, et al. 2018. Elevated pressure changes the purinergic system of microglial cells. |
| [29] |
Xavier AL, Menezes JRL, Goldman SA, Nedergaard M. 2014. Fine-tuning the central nervous system: microglial modelling of cells and synapses. |
| [30] |
Luo J, Lian Q, Zhu D, Zhao M, Mei T, et al. 2023. PLSCR1 promotes apoptosis and clearance of retinal ganglion cells in glaucoma pathogenesis. |
| [31] |
Mathew B, Torres LA, Gamboa Acha L, Tran S, Liu A, et al. 2021. Uptake and distribution of administered bone marrow mesenchymal stem cell extracellular vesicles in retina. |
| [32] |
Aires ID, Ribeiro-Rodrigues T, Boia R, Catarino S, Girão H, et al. 2020. Exosomes derived from microglia exposed to elevated pressure amplify the neuroinflammatory response in retinal cells. |
| [33] |
Yu Z, Wen Y, Jiang N, Li Z, Guan J, et al. 2022. TNF-α stimulation enhances the neuroprotective effects of gingival MSCs derived exosomes in retinal ischemia-reperfusion injury via the MEG3/miR-21a-5p axis. |
| [34] |
Breen KT, Anderson SR, Steele MR, Calkins DJ, Bosco A, et al. 2016. Loss of fractalkine signaling exacerbates axon transport dysfunction in a chronic model of glaucoma. |
| [35] |
Wang K, Peng B, Lin B. 2014. Fractalkine receptor regulates microglial neurotoxicity in an experimental mouse glaucoma model. |
| [36] |
Tan Z, Guo Y, Shrestha M, Sun D, Gregory-Ksander M, et al. 2022. Microglia depletion exacerbates retinal ganglion cell loss in a mouse model of glaucoma. |
| [37] |
Fernández-Albarral JA, de Hoz R, Matamoros JA, Chen L, López-Cuenca I, et al. 2022. Retinal changes in astrocytes and Müller glia in a mouse model of laser-induced glaucoma: a time-course study. |
| [38] |
Liu YX, Sun H, Guo WY. 2022. Astrocyte polarization in glaucoma: a new opportunity. |
| [39] |
Saada J, McAuley RJ, Marcatti M, Tang TZ, Motamedi M, et al. 2022. Oxidative stress induces Z-DNA-binding protein 1-dependent activation of microglia via mtDNA released from retinal pigment epithelial cells. |
| [40] |
Grotegut P, Kuehn S, Meißner W, Dick HB, Joachim SC. 2020. Intravitreal S100B injection triggers a time-dependent microglia response in a pro-inflammatory manner in retina and optic nerve. |
| [41] |
Bianchi R, Giambanco I, Donato R. 2010. S100B/RAGE-dependent activation of microglia via NF-κB and AP-1 Co-regulation of COX-2 expression by S100B, IL-1β and TNF-α. |
| [42] |
Ramírez AI, Fernández-Albarral JA, Hoz R, López-Cuenca I, Salobrar-García E, et al. 2020. Microglial changes in the early aging stage in a healthy retina and an experimental glaucoma model. |
| [43] |
Silverman SM, Wong WT. 2018. Microglia in the retina: roles in development, maturity, and disease. |
| [44] |
Shi J, Gao W, Shao F. 2017. Pyroptosis: gasdermin-mediated programmed necrotic cell death. |
| [45] |
Yang Y, Wang N, Xu L, Liu Y, Huang L, et al. 2023. Aryl hydrocarbon receptor dependent anti-inflammation and neuroprotective effects of tryptophan metabolites on retinal ischemia/reperfusion injury. |
| [46] |
Tezel G. 2022. Molecular regulation of neuroinflammation in glaucoma: current knowledge and the ongoing search for new treatment targets. |
| [47] |
Yang X, Zeng Q, Barış M, Tezel G. 2020. Transgenic inhibition of astroglial NF-κB restrains the neuroinflammatory and neurodegenerative outcomes of experimental mouse glaucoma. |
| [48] |
Harari OA, Liao JK. 2010. NF-κB and innate immunity in ischemic stroke. |
| [49] |
Wang Y, Chen S, Wang J, Liu Y, Chen Y, et al. 2021. MicroRNA-93/STAT3 signalling pathway mediates retinal microglial activation and protects retinal ganglion cells in an acute ocular hypertension model. |
| [50] |
Wan P, Su W, Zhang Y, Li Z, Deng C, et al. 2020. LncRNA H19 initiates microglial pyroptosis and neuronal death in retinal ischemia/reperfusion injury. |
| [51] |
Illes P, Rubini P, Ulrich H, Zhao Y, Tang Y. 2020. Regulation of microglial functions by purinergic mechanisms in the healthy and diseased CNS. |
| [52] |
Pietrowski MJ, Gabr AA, Kozlov S, Blum D, Halle A, et al. 2021. Glial purinergic signaling in neurodegeneration. |
| [53] |
Ho T, Vessey KA, Fletcher EL. 2014. Immunolocalization of the P2X4 receptor on neurons and glia in the mammalian retina. |
| [54] |
Romano GL, Amato R, Lazzara F, Porciatti V, Chou TH, et al. 2020. P2X7 receptor antagonism preserves retinal ganglion cells in glaucomatous mice. |
| [55] |
Shinozaki Y, Koizumi S. 2021. Potential roles of astrocytes and Müller cells in the pathogenesis of glaucoma. |
| [56] |
Li Q, Cheng Y, Zhang S, Sun X, Wu J. 2021. TRPV4-induced Müller cell gliosis and TNF-α elevation-mediated retinal ganglion cell apoptosis in glaucomatous rats via JAK2/STAT3/NF-κB pathway. |
| [57] |
Cui Y, Zhang Y, Zhao X, Shao L, Liu G, et al. 2021. ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. |
| [58] |
Husain S, Liou GI, Crosson CE. 2011. Opioid receptor activation: suppression of ischemia/reperfusion-induced production of TNF-α in the retina. |
| [59] |
Voigt J, Grosche A, Vogler S, Pannicke T, Hollborn M, et al. 2015. Nonvesicular release of ATP from rat retinal glial (Müller) cells is differentially mediated in response to osmotic stress and glutamate. |
| [60] |
Xue B, Xie Y, Xue Y, Hu N, Zhang G, et al. 2016. Involvement of P2X7 receptors in retinal ganglion cell apoptosis induced by activated Müller cells. |
| [61] |
Gao F, Li F, Miao Y, Dong LD, Zhang SH, et al. 2015. Group I metabotropic glutamate receptor agonist DHPG modulates Kir4.1 protein and mRNA in cultured rat retinal Müller cells. |
| [62] |
Ji M, Miao Y, Dong LD, Chen J, Mo XF, et al. 2012. Group I mGluR-mediated inhibition of Kir channels contributes to retinal Müller cell gliosis in a rat chronic ocular hypertension model. |
| [63] |
Harun-Or-Rashid M, Inman DM. 2018. Reduced AMPK activation and increased HCAR activation drive anti-inflammatory response and neuroprotection in glaucoma. |
| [64] |
Sapienza A, Raveu AL, Reboussin E, Roubeix C, Boucher C, et al. 2016. Bilateral neuroinflammatory processes in visual pathways induced by unilateral ocular hypertension in the rat. |
| [65] |
Ohsawa K, Irino Y, Nakamura Y, Akazawa C, Inoue K, et al. 2007. Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis. |
| [66] |
Tsao HK, Chiu PH, Sun SH. 2013. PKC-dependent ERK phosphorylation is essential for P2X7 receptor-mediated neuronal differentiation of neural progenitor cells. |
| [67] |
Zhao X, Sun R, Luo X, Wang F, Sun X. 2021. The interaction between microglia and macroglia in glaucoma. |
| [68] |
Wang M, Ma W, Zhao L, Fariss RN, Wong WT. 2011. Adaptive Müller cell responses to microglial activation mediate neuroprotection and coordinate inflammation in the retina. |
| [69] |
Sánchez-López A, Cuadros MA, Calvente R, Tassi M, Marín-Teva JL, et al. 2004. Radial migration of developing microglial cells in quail retina: a confocal microscopy study. |
| [70] |
Hu X, Xu MX, Zhou H, Cheng S, Li F, et al. 2020. Tumor necrosis factor-alpha aggravates gliosis and inflammation of activated retinal Müller cells. |
| [71] |
Wang M, Wong WT. 2014. Microglia-Müller cell interactions in the retina. |
| [72] |
Natoli R, Fernando N, Madigan M, Chu-Tan JA, Valter K, et al. 2017. Microglia-derived IL-1β promotes chemokine expression by Müller cells and RPE in focal retinal degeneration. |
| [73] |
Harada T, Harada C, Kohsaka S, Wada E, Yoshida K, et al. 2002. Microglia-Müller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration. |
| [74] |
Yu H, Zhong H, Sun J, Li N, Chen J, et al. 2023. Molecular signaling from microglia impacts macroglia autophagy and neurons survival in glaucoma. |
| [75] |
Reichenbach A, Bringmann A. 2020. Glia of the human retina. |
| [76] |
Yun SP, Kam TI, Panicker N, Kim S, Oh Y, et al. 2018. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. |
| [77] |
Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, et al. 2017. Neurotoxic reactive astrocytes are induced by activated microglia. |
| [78] |
Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, et al. 2012. Genomic analysis of reactive astrogliosis. |
| [79] |
Kimball E, Schaub J, Quillen S, Keuthan C, Pease ME, et al. 2021. The role of aquaporin-4 in optic nerve head astrocytes in experimental glaucoma. |
| [80] |
Sterling JK, Adetunji MO, Guttha S, Bargoud AR, Uyhazi KE, et al. 2020. GLP-1 receptor agonist NLY01 reduces retinal inflammation and neuron death secondary to ocular hypertension. |
| [81] |
Guttenplan KA, Stafford BK, El-Danaf RN, Adler DI, Münch AE, et al. 2020. Neurotoxic reactive astrocytes drive neuronal death after retinal injury. |
| [82] |
Joshi AU, Minhas PS, Liddelow SA, Haileselassie B, Andreasson KI, et al. 2019. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. |
| [83] |
Lee SC, Dickson DW, Brosnan CF. 1995. Interleukin-1, nitric oxide and reactive astrocytes. |
| [84] |
Wiemann S, Reinhard J, Reinehr S, Cibir Z, Joachim SC, et al. 2020. Loss of the extracellular matrix molecule tenascin-C leads to absence of reactive gliosis and promotes anti-inflammatory cytokine expression in an autoimmune glaucoma mouse model. |
| [85] |
Wiemann S, Reinhard J, Faissner A. 2019. Immunomodulatory role of the extracellular matrix protein tenascin-C in neuroinflammation. |
| [86] |
Claycomb KI, Winokur PN, Johnson KM, Nicaise AM, Giampetruzzi AW, et al. 2014. Aberrant production of tenascin-C in globoid cell leukodystrophy alters psychosine-induced microglial functions. |
| [87] |
Beckel JM, Argall AJ, Lim JC, Xia J, Lu W, et al. 2014. Mechanosensitive release of adenosine 5’-triphosphate through pannexin channels and mechanosensitive upregulation of pannexin channels in optic nerve head astrocytes: a mechanism for purinergic involvement in chronic strain. |
| [88] |
Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, et al. 2005. ATP mediates rapid microglial response to local brain injury in vivo. |
| [89] |
Bianco F, Pravettoni E, Colombo A, Schenk U, Möller T, et al. 2005. Astrocyte-derived ATP induces vesicle shedding and IL-1β release from microglia. |
| [90] |
Litvinchuk A, Wan YW, Swartzlander DB, Chen F, Cole A, et al. 2018. Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer's disease. |
| [91] |
Harder JM, Williams PA, Braine CE, Yang HS, Thomas JM, et al. 2020. Complement peptide C3a receptor 1 promotes optic nerve degeneration in DBA/2J mice. |
| [92] |
Reinehr S, Reinhard J, Gandej M, Gottschalk I, Stute G, et al. 2018. S100B immunization triggers NF-κB and complement activation in an autoimmune glaucoma model. |
| [93] |
Ma Y, Wang J, Wang Y, Yang GY. 2017. The biphasic function of microglia in ischemic stroke. |
| [94] |
Dumbrăveanu L, Cușnir V, Bobescu D. 2021. A review of neovascular glaucoma. Etiopathogenesis and treatment. |
| [95] |
Wang G, Zhang J, Hu X, Zhang L, Mao L, et al. 2013. Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. |
| [96] |
Qu J, Jakobs TC. 2013. The time course of gene expression during reactive gliosis in the optic nerve. |
| [97] |
García-Bermúdez MY, Freude KK, Mouhammad ZA, van Wijngaarden P, Martin KK, et al. 2021. Glial cells in glaucoma: friends, foes, and potential therapeutic targets. |
| [98] |
Ma W, Zhao L, Fontainhas AM, Fariss RN, Wong WT. 2009. Microglia in the mouse retina alter the structure and function of retinal pigmented epithelial cells: a potential cellular interaction relevant to AMD. |
| [99] |
Ma W, Wong WT. 2016. Aging changes in retinal microglia and their relevance to age-related retinal disease. |
| [100] |
Schubert T, Gleiser C, Heiduschka P, Franz C, Nagel-Wolfrum K, et al. 2015. Deletion of myosin VI causes slow retinal optic neuropathy and age-related macular degeneration (AMD)-relevant retinal phenotype. |
| [101] |
Weisschuh N, Neumann D, Wolf C, Wissinger B, Gramer E. 2005. Prevalence of myocilin and optineurin sequence variants in German normal tension glaucoma patients. Molecular Vision 11:284−87 |
| [102] |
Sahlender DA, Roberts RC, Arden SD, Spudich G, Taylor MJ, et al. 2005. Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. |
| [103] |
Rahimian R, Perlman K, Canonne C, Mechawar N. 2022. Targeting microglia–oligodendrocyte crosstalk in neurodegenerative and psychiatric disorders. |
| [104] |
Grotegut P, Kuehn S, Dick HB, Joachim SC. 2020. Destructive effect of intravitreal heat shock protein 27 application on retinal ganglion cells and neurofilament. |
| [105] |
Murakami Y, Notomi S, Hisatomi T, Nakazawa T, Ishibashi T, et al. 2013. Photoreceptor cell death and rescue in retinal detachment and degenerations. |
| [106] |
Okunuki Y, Mukai R, Pearsall EA, Klokman G, Husain D, et al. 2018. Microglia inhibit photoreceptor cell death and regulate immune cell infiltration in response to retinal detachment. |
| [107] |
Karlstetter M, Scholz R, Rutar M, Wong WT, Provis JM, et al. 2015. Retinal microglia: just bystander or target for therapy? |
| [108] |
Zeng HL, Shi JM. 2018. The role of microglia in the progression of glaucomatous neurodegeneration - a review. |
| [109] |
Zeng H, Ding M, Chen XX, Lu Q. 2014. Microglial NADPH oxidase activation mediates rod cell death in the retinal degeneration in rd mice. |
| [110] |
de Hoz R, Ramírez AI, González-Martín R, Ajoy D, Rojas B, et al. 2018. Bilateral early activation of retinal microglial cells in a mouse model of unilateral laser-induced experimental ocular hypertension. |
| [111] |
Rojas B, Gallego BI, Ramírez AI, Salazar JJ, de Hoz R, et al. 2014. Microglia in mouse retina contralateral to experimental glaucoma exhibit multiple signs of activation in all retinal layers. |
| [112] |
Akopian A, Kumar S, Ramakrishnan H, Viswanathan S, Bloomfield SA. 2019. Amacrine cells coupled to ganglion cells via gap junctions are highly vulnerable in glaucomatous mouse retinas. |
| [113] |
Cuenca N, Pinilla I, Fernández-Sánchez L, Salinas-Navarro M, Alarcón-Martínez L, et al. 2010. Changes in the inner and outer retinal layers after acute increase of the intraocular pressure in adult albino Swiss mice. |
| [114] |
Hernandez M, Rodriguez FD, Sharma SC, Vecino E. 2009. Immunohistochemical changes in rat retinas at various time periods of elevated intraocular pressure. Molecular Vision 15:2696−709 |
| [115] |
Moon JI, Kim IB, Gwon JS, Park MH, Kang TH, et al. 2005. Changes in retinal neuronal populations in the DBA/2J mouse. |
| [116] |
Zhu Y, Li SY, Zhang LJ, Lei B, Wang YC, et al. 2024. Neuroprotection of the P2X7 receptor antagonist A740003 on retinal ganglion cells in experimental glaucoma. |
| [117] |
Fernández-Albarral JA, Martínez-Lopóz MA, Marco EM, de Hoz R, Martín-Sánchez B, et al. 2021. Is saffron able to prevent the dysregulation of retinal cytokines induced by ocular hypertension in mice? |
| [118] |
Dong N, Dong Z, Chen Y, Gu X. 2020. Crocetin alleviates inflammation in MPTP-induced Parkinson’s disease models through improving mitochondrial functions. |
| [119] |
Fernández-Albarral JA, Ramírez AI, de Hoz R, López-Villarín N, Salobrar-García E, et al. 2019. Neuroprotective and anti-inflammatory effects of a hydrophilic saffron extract in a model of glaucoma. |
| [120] |
Sato K, Ohno-Oishi M, Yoshida M, Sato T, Aizawa T, et al. 2023. The GPR84 molecule is a mediator of a subpopulation of retinal microglia that promote TNF/IL-1α expression via the rho-ROCK pathway after optic nerve injury. |
| [121] |
Gosselin D, Skola D, Coufal NG, Holtman IR, Schlachetzki JCM, et al. 2017. An environment-dependent transcriptional network specifies human microglia identity. |
| [122] |
Usui-Ouchi A, Giles S, Harkins-Perry S, Mills EA, Bonelli R, et al. 2023. Integrating human iPSC-derived macrophage progenitors into retinal organoids to generate a mature retinal microglial niche. |