[1]

Gillespie LM, Volaire FA. 2017. Are winter and summer dormancy symmetrical seasonal adaptive strategies? The case of temperate herbaceous perennials. Annals of Botany 119:311−23

doi: 10.1093/aob/mcw264
[2]

Nilsson O. 2022. Winter dormancy in trees. Current Biology 32:R630−R634

doi: 10.1016/j.cub.2022.04.011
[3]

Ofir M, Kigel J. 2007. Regulation of summer dormancy by water deficit and ABA in Poa bulbosa ecotypes. Annals of Botany 99:293−99

doi: 10.1093/aob/mcl257
[4]

Chen F, Wang N, Zhou J, Zhao Z, Lv K, et al. 2022. Summer dormancy of Myricaria laxiflora to escape flooding stress: Changes in phytohormones and enzymes induced by environmental factors. Plant Physiology and Biochemistry 193:61−69

doi: 10.1016/j.plaphy.2022.10.020
[5]

Hieke S, Menzel CM, Lüdders P. 2002. Shoot development, chlorophyll, gas exchange and carbohydrates in lychee seedlings (Litchi chinensis). Tree Physiology 22:947−53

doi: 10.1093/treephys/22.13.947
[6]

Fu XY, Mo WP, Zhang JY, Zhou LY, Wang HC, et al. 2014. Shoot growth pattern and quantifying flush maturity with SPAD value in litchi (Litchi chinensis Sonn.). Scientia Horticulturae 174:29−35

doi: 10.1016/j.scienta.2014.04.029
[7]

O'Hare TJ, Turnbull CGN. 2004. Root growth, cytokinin and shoot dormancy in lychee (Litchi chinensis Sonn.). Scientia Horticulturae 102:257−66

doi: 10.1016/j.scienta.2004.02.004
[8]

Ma MM, Zhang HF, Tian Q, Wang HC, Zhang FY, et al. 2024. MIKC type MADS-box transcription factor LcSVP2 is involved in dormancy regulation of the terminal buds in evergreen perennial litchi (Litchi chinensis Sonn.). Horticulture Research 11:uhae150

doi: 10.1093/hr/uhae150
[9]

Tian X, Zhong ZQ, Qi Y, Ma MM, Yang MC, et al. 2025. Two aquaporins, LcPIP1;4 and LcPIP1;4a, cooperatively regulate the onset of dormancy of the terminal buds in evergreen perennial litchi (Litchi chinensis Sonn.). Horticulture Research 00:uhaf122

doi: 10.1093/hr/uhaf122
[10]

Yang Q, Gao Y, Wu X, Moriguchi T, Bai S, et al. 2021. Bud endodormancy in deciduous fruit trees: advances and prospects. Horticulture research 8:139

doi: 10.1038/s41438-021-00575-2
[11]

Yin X, Wang X, Komatsu S. 2018. Phosphoproteomics: protein phosphorylation in regulation of seed germination and plant growth. Current Protein & Peptide Science 19:401−12

doi: 10.2174/1389203718666170209151048
[12]

Chen X, Li Q, Ding L, Zhang S, Shan S, et al. 2023. The MKK3-MPK7 cascade phosphorylates ERF4 and promotes its rapid degradation to release seed dormancy in Arabidopsis. Molecular plant 16:1743−58

doi: 10.1016/j.molp.2023.09.006
[13]

Varshney V, Majee M. 2023. Seed's awakening: unveiling the MKK3-MPK7-ERF4 module in dormancy-to-germination transition. Molecular Plant 16:1730−32

doi: 10.1016/j.molp.2023.10.014
[14]

Regnard S, Otani M, Keruzore M, Teinturier A, Blondel M, et al. 2024. The MKK3 module integrates nitrate and light signals to modulate secondary dormancy in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 121:e2403646121

doi: 10.1073/pnas.2403646121
[15]

Mithoe SC, Menke FLH. 2011. Phosphoproteomics perspective on plant signal transduction and tyrosine phosphorylation. Phytochemistry 72:997−1006

doi: 10.1016/j.phytochem.2010.12.009
[16]

Zhang WJ, Zhou Y, Zhang Y, Su YH, Xu T. 2023. Protein phosphorylation: a molecular switch in plant signaling. Cell Reports 42:112729

doi: 10.1016/j.celrep.2023.112729
[17]

Chen L, Wang M, Wang B, Chen S, Li L, et al. 2023. Integrated genome-wide chromatin accessibility and expression profile identify key transcription factors involved in bud endodormancy break in tea plants. Scientia Horticulturae 317:112022

doi: 10.1016/j.scienta.2023.112022
[18]

DeLong A, Mockaitis K, Christensen S. 2002. Protein phosphorylation in the delivery of and response to auxin signals. Plant Molecular Biology 49:285−303

doi: 10.1023/A:1015246828230
[19]

Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M. 1998. Arabidopsis thaliana: a model plant for genome analysis. Science 282:662−82

doi: 10.1126/science.282.5389.662
[20]

Smith RD, Walker JC. 1996. PLANT PROTEIN PHOSPHATASES. Annu Rev Plant Physiol Plant Mol Biol 47:101−25

doi: 10.1146/annurev.arplant.47.1.101
[21]

Sojka J, Šamajová O, Šamaj J. 2024. Gene-edited protein kinases and phosphatases in molecular plant breeding. Trends Plant Science 29:694−710

doi: 10.1016/j.tplants.2023.11.019
[22]

Yip Delormel T, Boudsocq M. 2019. Properties and functions of calcium-dependent protein kinases and their relatives in Arabidopsis thaliana. New Phytologist 224:585−604

doi: 10.1111/nph.16088
[23]

Nemoto K, Takemori N, Seki M, Shinozaki K, Sawasaki T. 2015. Members of the plant CRK superfamily are capable of trans- and autophosphorylation of tyrosine residues. Journal of Biological Chemistry 290:16665−77

doi: 10.1074/jbc.M114.617274
[24]

Bender KW, Blackburn RK, Monaghan J, Derbyshire P, Menke FLH, et al. 2017. Autophosphorylation-based calcium (Ca2+) sensitivity priming and Ca2+/calmodulin inhibition of Arabidopsis thaliana Ca2+-dependent protein kinase 28 (CPK28). Journal of Biological Chemistry 292:3988−4002

doi: 10.1074/jbc.M116.763243
[25]

Zhang M, Zhang S. 2022. Mitogen-activated protein kinase cascades in plant signaling. Journal of Integrative Plant Biology 64:301−41

doi: 10.1111/jipb.13215
[26]

Yang Y, Wu C, Shan W, Wei W, Zhao Y, et al. 2023. Mitogen-activated protein kinase 14-mediated phosphorylation of MaMYB4 negatively regulates banana fruit ripening. Horticulture Research 10:uhac243

doi: 10.1093/hr/uhac243
[27]

Ding S, Zhang B, Qin F. 2015. Arabidopsis RZFP34/CHYR1, a ubiquitin E3 ligase, regulates stomatal movement and drought tolerance via SnRK2.6-mediated phosphorylation. The Plant Cell 27:3228−44

doi: 10.1105/tpc.15.00321
[28]

Liu X, Wu R, Bulley SM, Zhong C, Li D. 2022. Kiwifruit MYBS1-like and GBF3 transcription factors influence ʟ-ascorbic acid biosynthesis by activating transcription of GDP-L-galactose phosphorylase 3. New Phytologist 234:1782−800

doi: 10.1111/nph.18097
[29]

Rampitsch C, Bykova NV. 2012. The beginnings of crop phosphoproteomics: exploring early warning systems of stress. Frontiers in Plant Science 3:144

doi: 10.3389/fpls.2012.00144
[30]

Nakagami H, Sugiyama N, Mochida K, Daudi A, Yoshida Y, et al. 2010. Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. Plant physiology 153:1161−74

doi: 10.1104/pp.110.157347
[31]

Mayank P, Grossman J, Wuest S, Boisson-Dernier A, Roschitzki B, et al. 2012. Characterization of the phosphoproteome of mature Arabidopsis pollen. The Plant Journal 72:89−101

doi: 10.1111/j.1365-313X.2012.05061.x
[32]

Zhang H, Li H, Lai B, Xia H, Wang H, et al. 2016. Morphological characterization and gene expression profiling during bud development in a tropical perennial, Litchi chinensis Sonn. Frontiers in Plant Science 7:1517

doi: 10.3389/fpls.2016.01517
[33]

Chen X, Ma J, Wang X, Lu K, Liu Y, et al. 2021. Functional modulation of an aquaporin to intensify photosynthesis and abrogate bacterial virulence in rice. The Plant Journal 108:330−46

doi: 10.1111/tpj.15427
[34]

Kruger NJ. 1994. The Bradford method for protein quantitation. In Basic Protein and Peptide Protocols. Methods in Molecular Biology, eds. Walker JM. vol. 32. Totowa, New Jersey: Humana Press. pp. 9−15. doi: 10.1385/0-89603-268-X:9

[35]

Layton CJ, Hellinga HW. 2011. Quantitation of protein-protein interactions by thermal stability shift analysis. Protein Science 20:1439−50

doi: 10.1002/pro.674
[36]

Rai A, Kumari K, Han SS. 2023. Polyphenolic profiling of Victoria Amazonica using MRM LC-MS/MS: a comparative analysis of various plant parts. Scientia Horticulturae 320:112206

doi: 10.1016/j.scienta.2023.112206
[37]

Pradas N, Jurado-Ruiz F, Onielfa C, Arús P, Aranzana MJ. 2024. PERSEUS: an interactive and intuitive web-based tool for pedigree visualization. Bioinformatics 40:btae060

doi: 10.1093/bioinformatics/btae060
[38]

Dennis G Jr., Sherman BT, Hosack DA, Yang J, Gao W, et al. 2003. DAVID: database for annotation, visualization, and integrated discovery. Genome Biology 4:R60

doi: 10.1186/gb-2003-4-9-r60
[39]

Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research 44:D457−D462

doi: 10.1093/nar/gkv1070
[40]

Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. 2017. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic acids research 45:D353−D361

doi: 10.1093/nar/gkw1092
[41]

Wagih O, Sugiyama N, Ishihama Y, Beltrao P. 2016. Uncovering phosphorylation-based specificities through functional interaction networks. Molecular & Cellular Proteomics 15:236−45

doi: 10.1074/mcp.M115.052357
[42]

Crooks GE, Hon G, Chandonia JM, Brenner SE. 2004. WebLogo: a sequence logo generator. Genome Research 14:1188−90

doi: 10.1101/gr.849004
[43]

Miller ML, Jensen LJ, Diella F, Jørgensen C, Tinti M, et al. 2008. Linear motif atlas for phosphorylation-dependent signaling. Science signaling 1:ra2

doi: 10.1126/scisignal.1159433
[44]

Schulz P, Herde M, Romeis T. 2013. Calcium-dependent protein kinases: hubs in plant stress signaling and development. Plant Physiology 163:523−30

doi: 10.1104/pp.113.222539
[45]

Li J, Zhou H, Zhang Y, Li Z, Yang Y, et al. 2020. The GSK3-like kinase BIN2 is a molecular switch between the salt stress response and growth recovery in Arabidopsis thaliana. Developmental Cell 55:367−380.e366

doi: 10.1016/j.devcel.2020.08.005
[46]

Pang X, Halaly T, Crane O, Keilin T, Keren-Keiserman A, et al. 2007. Involvement of calcium signalling in dormancy release of grape buds. Journal of Experimental Botany 58:3249−62

doi: 10.1093/jxb/erm172
[47]

Mao X, Zhang J, Liu W, Yan S, Liu Q, et al. 2019. The MKKK62-MKK3-MAPK7/14 module negatively regulates seed dormancy in rice. Rice 12:2

doi: 10.1186/s12284-018-0260-z
[48]

Zhang Y, Tan Q, Wang N, Meng X, He H, et al. 2022. PpMYB52 negatively regulates peach bud break through the gibberellin pathway and through interactions with PpMIEL1. Frontiers in Plant Science 13:971482

doi: 10.3389/fpls.2022.971482
[49]

Bogamuwa S, Jang JC. 2013. The Arabidopsis tandem CCCH zinc finger proteins AtTZF4, 5 and 6 are involved in light-, abscisic acid- and gibberellic acid-mediated regulation of seed germination. Plant, Cell & Environment 36:1507−19

doi: 10.1111/pce.12084
[50]

Liang JH, Li JR, Liu C, Pan WQ, Wu WJ, et al. 2023. GhbZIP30-GhCCCH17 module accelerates corm dormancy release by reducing endogenous ABA under cold storage in Gladiolus. Plant, Cell & Environment 46:2078−96

doi: 10.1111/pce.14595
[51]

Rizkallah R, Alexander KE, Hurt MM. 2011. Global mitotic phosphorylation of C2H2 zinc finger protein linker peptides. Cell Cycle 10:3327−36

doi: 10.4161/cc.10.19.17619
[52]

Broucke E, Dang TTV, Li Y, Hulsmans S, Van Leene J, et al. 2023. SnRK1 inhibits anthocyanin biosynthesis through both transcriptional regulation and direct phosphorylation and dissociation of the MYB/bHLH/TTG1 MBW complex. The Plant Journal 115:1193−213

doi: 10.1111/tpj.16312
[53]

Shi S, Li S, Asim M, Mao J, Xu D, et al. 2018. The Arabidopsis Calcium-Dependent Protein Kinases (CDPKs) and their roles in plant growth regulation and abiotic stress responses. International Journal of Molecular Sciences 19:1900

doi: 10.3390/ijms19071900
[54]

Saito S, Hamamoto S, Moriya K, Matsuura A, Sato Y, et al. 2018. N-myristoylation and S-acylation are common modifications of Ca2+ -regulated Arabidopsis kinases and are required for activation of the SLAC1 anion channel. New Phytologist 218:1504−21

doi: 10.1111/nph.15053