| [1] |
Gillespie LM, Volaire FA. 2017. Are winter and summer dormancy symmetrical seasonal adaptive strategies? The case of temperate herbaceous perennials. |
| [2] |
Nilsson O. 2022. Winter dormancy in trees. |
| [3] |
Ofir M, Kigel J. 2007. Regulation of summer dormancy by water deficit and ABA in Poa bulbosa ecotypes. |
| [4] |
Chen F, Wang N, Zhou J, Zhao Z, Lv K, et al. 2022. Summer dormancy of Myricaria laxiflora to escape flooding stress: Changes in phytohormones and enzymes induced by environmental factors. |
| [5] |
Hieke S, Menzel CM, Lüdders P. 2002. Shoot development, chlorophyll, gas exchange and carbohydrates in lychee seedlings (Litchi chinensis). |
| [6] |
Fu XY, Mo WP, Zhang JY, Zhou LY, Wang HC, et al. 2014. Shoot growth pattern and quantifying flush maturity with SPAD value in litchi (Litchi chinensis Sonn.). |
| [7] |
O'Hare TJ, Turnbull CGN. 2004. Root growth, cytokinin and shoot dormancy in lychee (Litchi chinensis Sonn.). |
| [8] |
Ma MM, Zhang HF, Tian Q, Wang HC, Zhang FY, et al. 2024. MIKC type MADS-box transcription factor LcSVP2 is involved in dormancy regulation of the terminal buds in evergreen perennial litchi (Litchi chinensis Sonn.). |
| [9] |
Tian X, Zhong ZQ, Qi Y, Ma MM, Yang MC, et al. 2025. Two aquaporins, LcPIP1;4 and LcPIP1;4a, cooperatively regulate the onset of dormancy of the terminal buds in evergreen perennial litchi (Litchi chinensis Sonn.). |
| [10] |
Yang Q, Gao Y, Wu X, Moriguchi T, Bai S, et al. 2021. Bud endodormancy in deciduous fruit trees: advances and prospects. |
| [11] |
Yin X, Wang X, Komatsu S. 2018. Phosphoproteomics: protein phosphorylation in regulation of seed germination and plant growth. |
| [12] |
Chen X, Li Q, Ding L, Zhang S, Shan S, et al. 2023. The MKK3-MPK7 cascade phosphorylates ERF4 and promotes its rapid degradation to release seed dormancy in Arabidopsis. |
| [13] |
Varshney V, Majee M. 2023. Seed's awakening: unveiling the MKK3-MPK7-ERF4 module in dormancy-to-germination transition. |
| [14] |
Regnard S, Otani M, Keruzore M, Teinturier A, Blondel M, et al. 2024. The MKK3 module integrates nitrate and light signals to modulate secondary dormancy in Arabidopsis thaliana. |
| [15] |
Mithoe SC, Menke FLH. 2011. Phosphoproteomics perspective on plant signal transduction and tyrosine phosphorylation. |
| [16] |
Zhang WJ, Zhou Y, Zhang Y, Su YH, Xu T. 2023. Protein phosphorylation: a molecular switch in plant signaling. |
| [17] |
Chen L, Wang M, Wang B, Chen S, Li L, et al. 2023. Integrated genome-wide chromatin accessibility and expression profile identify key transcription factors involved in bud endodormancy break in tea plants. |
| [18] |
DeLong A, Mockaitis K, Christensen S. 2002. Protein phosphorylation in the delivery of and response to auxin signals. |
| [19] |
Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M. 1998. Arabidopsis thaliana: a model plant for genome analysis. |
| [20] |
Smith RD, Walker JC. 1996. PLANT PROTEIN PHOSPHATASES. |
| [21] |
Sojka J, Šamajová O, Šamaj J. 2024. Gene-edited protein kinases and phosphatases in molecular plant breeding. |
| [22] |
Yip Delormel T, Boudsocq M. 2019. Properties and functions of calcium-dependent protein kinases and their relatives in Arabidopsis thaliana. |
| [23] |
Nemoto K, Takemori N, Seki M, Shinozaki K, Sawasaki T. 2015. Members of the plant CRK superfamily are capable of trans- and autophosphorylation of tyrosine residues. |
| [24] |
Bender KW, Blackburn RK, Monaghan J, Derbyshire P, Menke FLH, et al. 2017. Autophosphorylation-based calcium (Ca2+) sensitivity priming and Ca2+/calmodulin inhibition of Arabidopsis thaliana Ca2+-dependent protein kinase 28 (CPK28). |
| [25] |
Zhang M, Zhang S. 2022. Mitogen-activated protein kinase cascades in plant signaling. |
| [26] |
Yang Y, Wu C, Shan W, Wei W, Zhao Y, et al. 2023. Mitogen-activated protein kinase 14-mediated phosphorylation of MaMYB4 negatively regulates banana fruit ripening. |
| [27] |
Ding S, Zhang B, Qin F. 2015. Arabidopsis RZFP34/CHYR1, a ubiquitin E3 ligase, regulates stomatal movement and drought tolerance via SnRK2.6-mediated phosphorylation. |
| [28] |
Liu X, Wu R, Bulley SM, Zhong C, Li D. 2022. Kiwifruit MYBS1-like and GBF3 transcription factors influence ʟ-ascorbic acid biosynthesis by activating transcription of GDP-L-galactose phosphorylase 3. |
| [29] |
Rampitsch C, Bykova NV. 2012. The beginnings of crop phosphoproteomics: exploring early warning systems of stress. |
| [30] |
Nakagami H, Sugiyama N, Mochida K, Daudi A, Yoshida Y, et al. 2010. Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. |
| [31] |
Mayank P, Grossman J, Wuest S, Boisson-Dernier A, Roschitzki B, et al. 2012. Characterization of the phosphoproteome of mature Arabidopsis pollen. |
| [32] |
Zhang H, Li H, Lai B, Xia H, Wang H, et al. 2016. Morphological characterization and gene expression profiling during bud development in a tropical perennial, Litchi chinensis Sonn. |
| [33] |
Chen X, Ma J, Wang X, Lu K, Liu Y, et al. 2021. Functional modulation of an aquaporin to intensify photosynthesis and abrogate bacterial virulence in rice. |
| [34] |
Kruger NJ. 1994. The Bradford method for protein quantitation. In Basic Protein and Peptide Protocols. Methods in Molecular Biology, eds. Walker JM. vol. 32. Totowa, New Jersey: Humana Press. pp. 9−15. doi: 10.1385/0-89603-268-X:9 |
| [35] |
Layton CJ, Hellinga HW. 2011. Quantitation of protein-protein interactions by thermal stability shift analysis. |
| [36] |
Rai A, Kumari K, Han SS. 2023. Polyphenolic profiling of Victoria Amazonica using MRM LC-MS/MS: a comparative analysis of various plant parts. |
| [37] |
Pradas N, Jurado-Ruiz F, Onielfa C, Arús P, Aranzana MJ. 2024. PERSEUS: an interactive and intuitive web-based tool for pedigree visualization. |
| [38] |
Dennis G Jr., Sherman BT, Hosack DA, Yang J, Gao W, et al. 2003. DAVID: database for annotation, visualization, and integrated discovery. |
| [39] |
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2016. KEGG as a reference resource for gene and protein annotation. |
| [40] |
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. 2017. KEGG: new perspectives on genomes, pathways, diseases and drugs. |
| [41] |
Wagih O, Sugiyama N, Ishihama Y, Beltrao P. 2016. Uncovering phosphorylation-based specificities through functional interaction networks. |
| [42] |
Crooks GE, Hon G, Chandonia JM, Brenner SE. 2004. WebLogo: a sequence logo generator. |
| [43] |
Miller ML, Jensen LJ, Diella F, Jørgensen C, Tinti M, et al. 2008. Linear motif atlas for phosphorylation-dependent signaling. |
| [44] |
Schulz P, Herde M, Romeis T. 2013. Calcium-dependent protein kinases: hubs in plant stress signaling and development. |
| [45] |
Li J, Zhou H, Zhang Y, Li Z, Yang Y, et al. 2020. The GSK3-like kinase BIN2 is a molecular switch between the salt stress response and growth recovery in Arabidopsis thaliana. |
| [46] |
Pang X, Halaly T, Crane O, Keilin T, Keren-Keiserman A, et al. 2007. Involvement of calcium signalling in dormancy release of grape buds. |
| [47] |
Mao X, Zhang J, Liu W, Yan S, Liu Q, et al. 2019. The MKKK62-MKK3-MAPK7/14 module negatively regulates seed dormancy in rice. |
| [48] |
Zhang Y, Tan Q, Wang N, Meng X, He H, et al. 2022. PpMYB52 negatively regulates peach bud break through the gibberellin pathway and through interactions with PpMIEL1. |
| [49] |
Bogamuwa S, Jang JC. 2013. The Arabidopsis tandem CCCH zinc finger proteins AtTZF4, 5 and 6 are involved in light-, abscisic acid- and gibberellic acid-mediated regulation of seed germination. |
| [50] |
Liang JH, Li JR, Liu C, Pan WQ, Wu WJ, et al. 2023. GhbZIP30-GhCCCH17 module accelerates corm dormancy release by reducing endogenous ABA under cold storage in Gladiolus. |
| [51] |
Rizkallah R, Alexander KE, Hurt MM. 2011. Global mitotic phosphorylation of C2H2 zinc finger protein linker peptides. |
| [52] |
Broucke E, Dang TTV, Li Y, Hulsmans S, Van Leene J, et al. 2023. SnRK1 inhibits anthocyanin biosynthesis through both transcriptional regulation and direct phosphorylation and dissociation of the MYB/bHLH/TTG1 MBW complex. |
| [53] |
Shi S, Li S, Asim M, Mao J, Xu D, et al. 2018. The Arabidopsis Calcium-Dependent Protein Kinases (CDPKs) and their roles in plant growth regulation and abiotic stress responses. |
| [54] |
Saito S, Hamamoto S, Moriya K, Matsuura A, Sato Y, et al. 2018. N-myristoylation and S-acylation are common modifications of Ca2+ -regulated Arabidopsis kinases and are required for activation of the SLAC1 anion channel. |