[1]

Ratchford AM, Chang AS, Chi MMY, Sheridan R, Moley KH. 2007. Maternal diabetes adversely affects AMP-activated protein kinase activity and cellular metabolism in murine oocytes. American Journal of Physiology Endocrinology and Metabolism 293:E1198−E1206

doi: 10.1152/ajpendo.00097.2007
[2]

Wang Q, Moley KH. 2010. Maternal diabetes and oocyte quality. Mitochondrion 10:403−10

doi: 10.1016/j.mito.2010.03.002
[3]

Boerschmann H, Pflüger M, Henneberger L, Ziegler AG, Hummel S. 2010. Prevalence and predictors of overweight and insulin resistance in offspring of mothers with gestational diabetes mellitus. Diabetes Care 33:1845−49

doi: 10.2337/dc10-0139
[4]

Chen B, Du YR, Zhu H, Sun ML, Wang C, et al. 2022. Maternal inheritance of glucose intolerance via oocyte TET3 insufficiency. Nature 605:761−66

doi: 10.1038/s41586-022-04756-4
[5]

Kushner RF, Sorensen KW. 2013. Lifestyle medicine: the future of chronic disease management. Current Opinion in Endocrinology & Diabetes and Obesity 20:389−95

doi: 10.1097/01.med.0000433056.76699.5d
[6]

Tang GY, Meng X, Gan RY, Zhao CN, Liu Q, et al. 2019. Health functions and related molecular mechanisms of tea components: an update review. International Journal of Molecular Sciences 20:6196

doi: 10.3390/ijms20246196
[7]

Lu J, Zhao SX, Zhang MY, Ji PY, Chao S, et al. 2022. Tea polyphenols alleviate the adverse effects of diabetes on oocyte quality. Food & Function 13:5396−405

doi: 10.1039/D1FO03770F
[8]

Delbarba A, Anelli V, Bambini F, Buoso C, Facondo P, et al. 2025. Type 1 diabetes mellitus and sperm quality: a case-control study. Andrology 13:208−16

doi: 10.1111/andr.13681
[9]

Holstein A, Patzer O, Tiemann T, Vortherms J, Kovacs P. 2012. Number and sex ratio of children and impact of parental diabetes in individuals with Type 1 diabetes. Diabetic Medicine 29:1268−71

doi: 10.1111/j.1464-5491.2012.03618.x
[10]

Sjöberg L, Pitkäniemi J, Haapala L, Kaaja R, Tuomilehto J. 2013. Fertility in people with childhood-onset type 1 diabetes. Diabetologia 56:78−81

doi: 10.1007/s00125-012-2731-x
[11]

Sønnichsen-Dreehsen AS, Fedder J, Wod M, Thorarinsson CT, Nørgård BM. 2025. The association between paternal diabetes mellitus and successful pregnancy—Examined in a nationwide population undergoing reproductive treatment. Andrology 13:485−93

doi: 10.1111/andr.13702
[12]

Facondo P, Di Lodovico E, Delbarba A, Anelli V, Pezzaioli LC, et al. 2022. The impact of diabetes mellitus type 1 on male fertility: systematic review and meta-analysis. Andrology 10:426−40

doi: 10.1111/andr.13140
[13]

Condorelli RA, La Vignera S, Mongioi LM, Alamo A, Calogero AE. 2018. Diabetes mellitus and infertility: different pathophysiological effects in type 1 and type 2 on sperm function. Frontiers in Endocrinology 9:268

doi: 10.3389/fendo.2018.00268
[14]

Ballester J, Muñoz MC, Domínguez J, Rigau T, Guinovart JJ, et al. 2004. Insulin-dependent diabetes affects testicular function by FSH- and LH-linked mechanisms. Journal of Andrology 25:706−19

doi: 10.1002/j.1939-4640.2004.tb02845.x
[15]

Alves MG, Martins AD, Moreira PI, Carvalho RA, Sousa M, et al. 2015. Metabolic fingerprints in testicular biopsies from type 1 diabetic patients. Cell and Tissue Research 362:431−40

doi: 10.1007/s00441-015-2217-5
[16]

Pavlinkova G, Margaryan H, Zatecka E, Valaskova E, Elzeinova F, et al. 2017. Transgenerational inheritance of susceptibility to diabetes-induced male subfertility. Scientific Reports 7:4940

doi: 10.1038/s41598-017-05286-0
[17]

Zhu XB, Niu ZH, Fan WM, Sheng CS, Chen Q. 2023. Type 2 diabetes mellitus and the risk of male infertility: a Mendelian randomization study. Frontiers in Endocrinology 14:1279058

doi: 10.3389/fendo.2023.1279058
[18]

Bener A, Al-Ansari AA, Zirie M, Al-Hamaq AOAA. 2009. Is male fertility associated with type 2 diabetes mellitus? International Urology and Nephrology 41:777−84

doi: 10.1007/s11255-009-9565-6
[19]

van Woudenbergh GJ, Kuijsten A, Drogan D, van der A DL, Romaguera D, et al. 2012. Tea consumption and incidence of type 2 diabetes in Europe: the EPIC-InterAct case-cohort study. PLoS One 7:e36910

doi: 10.1371/journal.pone.0036910
[20]

AbbasiHormozi S, Kouhkan A, Shahverdi A, Parikar A, Shirin A, et al. 2023. How much obesity and diabetes do impair male fertility? Reproductive Biology and Endocrinology 21:48

doi: 10.1186/s12958-022-01034-w
[21]

Jazayeri M, Eftekhari-Yazdi P, Sadighi Gilani MA, Sharafi M, Shahverdi A. 2022. Epigenetic modifications at DMRs of imprinting genes in sperm of type 2 diabetic men. Zygote 30:638−47

doi: 10.1017/S0967199422000107
[22]

Wei Y, Yang CR, Wei YP, Zhao ZA, Hou Y, et al. 2014. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proceedings of the National Academy of Sciences of the United States of America 111:1873−78

doi: 10.1073/pnas.1321195111
[23]

Magliano DJ, Boyko EJ. 2021. IDF Diabetes Atlas, 10th edition. Brussels: International Diabetes Federation

[24]

Malaza N, Masete M, Adam S, Dias S, Nyawo T, et al. 2022. A systematic review to compare adverse pregnancy outcomes in women with pregestational diabetes and gestational diabetes. International Journal of Environmental Research and Public Health 19:10846

doi: 10.3390/ijerph191710846
[25]

Andrade C. 2024. Exposure of pregnancy to pregestational diabetes, gestational diabetes, and antidiabetic medications with especial focus on major congenital and cardiac malformations in offspring. The Journal of Clinical Psychiatry 85:24f15318

doi: 10.4088/JCP.24f15318
[26]

Codner E, Mook-Kanamori D, Bazaes RA, Unanue N, Sovino H, et al. 2005. Ovarian function during puberty in girls with type 1 diabetes mellitus: response to leuprolide. The Journal of Clinical Endocrinology & Metabolism 90:3939−45

doi: 10.1210/jc.2005-0142
[27]

Lin S, Lin K, Li W, Zhou X, Huang T. 2010. Maternal diabetes increases apoptosis in mice oocytes, not 2-cell embryos. Endocrine 37:460−66

doi: 10.1007/s12020-010-9337-1
[28]

Wang Q, Chi MM, Moley KH. 2012. Live imaging reveals the link between decreased glucose uptake in ovarian cumulus cells and impaired oocyte quality in female diabetic mice. Endocrinology 153:1984−89

doi: 10.1210/en.2011-1815
[29]

Wang Q, Ratchford AM, Chi MMY, Schoeller E, Frolova A, et al. 2009. Maternal diabetes causes mitochondrial dysfunction and meiotic defects in murine oocytes. Molecular Endocrinology 23:1603−12

doi: 10.1210/me.2009-0033
[30]

Li L, Jing Y, Dong MZ, Fan LH, Li QN, et al. 2020. Type 1 diabetes affects zona pellucida and genome methylation in oocytes and granulosa cells. Molecular and Cellular Endocrinology 500:110627

doi: 10.1016/j.mce.2019.110627
[31]

Ma JY, Li M, Ge ZJ, Luo Y, Ou XH, et al. 2012. Whole transcriptome analysis of the effects of type I diabetes on mouse oocytes. PLoS One 7:e41981

doi: 10.1371/journal.pone.0041981
[32]

Ge ZJ, Liang XW, Guo L, Liang QX, Luo SM, et al. 2013. Maternal diabetes causes alterations of DNA methylation statuses of some imprinted genes in murine oocytes. Biology of Reproduction 88:117

doi: 10.1095/biolreprod.112.105981
[33]

Wang Q, Tang SB, Song XB, Deng TF, Zhang TT, et al. 2018. High-glucose concentrations change DNA methylation levels in human IVM oocytes. Human Reproduction 33:474−81

doi: 10.1093/humrep/dey006
[34]

Xin Y, Jin Y, Ge J, Huang Z, Han L, et al. 2021. Involvement of SIRT3-GSK3β deacetylation pathway in the effects of maternal diabetes on oocyte meiosis. Cell Proliferation 54:e12940

doi: 10.1111/cpr.12940
[35]

Ge J, Zhang N, Tang S, Hu F, Hou X, et al. 2021. Loss of PDK1 induces meiotic defects in oocytes from diabetic mice. Frontiers in Cell and Developmental Biology 9:793389

doi: 10.3389/fcell.2021.793389
[36]

Barker DJ, Osmond C, Law CM. 1989. The intrauterine and early postnatal origins of cardiovascular disease and chronic bronchitis. Journal of Epidemiology and Community Health 43:237−40

doi: 10.1136/jech.43.3.237
[37]

Mo J, Liu X, Huang Y, He R, Zhang Y, et al. 2022. Developmental origins of adult diseases. Medical Review 2:450−70

doi: 10.1515/mr-2022-0027
[38]

Ge ZJ, Zhang CL, Schatten H, Sun QY. 2014. Maternal diabetes mellitus and the origin of non-communicable diseases in offspring: the role of epigenetics. Biology of Reproduction 90:139

doi: 10.1095/biolreprod.114.118141
[39]

Bianco ME, Josefson JL. 2019. Hyperglycemia during pregnancy and long-term offspring outcomes. Current Diabetes Reports 19:143

doi: 10.1007/s11892-019-1267-6
[40]

Zou K, Ren J, Luo S, Zhang J, Zhou C, et al. 2021. Intrauterine hyperglycemia impairs memory across two generations. Translational Psychiatry 11:434

doi: 10.1038/s41398-021-01565-7
[41]

Ge ZJ, Liang QX, Luo SM, Wei YC, Han ZM, et al. 2013. Diabetic uterus environment may play a key role in alterations of DNA methylation of several imprinted genes at mid-gestation in mice. Reproductive Biology and Endocrinology 11:119

doi: 10.1186/1477-7827-11-119
[42]

Hepp P, Hutter S, Knabl J, Hofmann S, Kuhn C, et al. 2018. Histone H3 lysine 9 acetylation is downregulated in GDM Placentas and Calcitriol supplementation enhanced this effect. International Journal of Molecular Sciences 19:4061

doi: 10.3390/ijms19124061
[43]

Di Pietrantonio N, Sánchez-Ceinos J, Shumliakivska M, Rakow A, Mandatori D, et al. 2024. The inflammatory and oxidative phenotype of gestational diabetes is epigenetically transmitted to the offspring: role of methyltransferase MLL1-induced H3K4me3. European Heart Journal 45:5171−85

doi: 10.1093/eurheartj/ehae688
[44]

Penesova A, Bunt JC, Bogardus C, Krakoff J. 2010. Effect of paternal diabetes on pre-diabetic phenotypes in adult offspring. Diabetes Care 33:1823−28

doi: 10.2337/dc10-0664
[45]

Moss JL, Harris KM. 2015. Impact of maternal and paternal preconception health on birth outcomes using prospective couples' data in Add Health. Archives of Gynecology and Obstetrics 291:287−98

doi: 10.1007/s00404-014-3521-0
[46]

Zatecka E, Bohuslavova R, Valaskova E, Margaryan H, Elzeinova F, et al. 2021. The transgenerational transmission of the paternal type 2 diabetes-induced subfertility phenotype. Frontiers in Endocrinology 12:763863

doi: 10.3389/fendo.2021.763863
[47]

Wensink MJ, Lu Y, Tian L, Shaw GM, Rizzi S, et al. 2022. Preconception antidiabetic drugs in men and birth defects in offspring: a nationwide cohort study. Annals of Internal Medicine 175:665−73

doi: 10.7326/M21-4389
[48]

Meng LC, van Gelder MMHJ, Chuang HM, Chen LK, Hsiao FY, et al. 2024. Paternal metformin use and risk of congenital malformations in offspring in Norway and Taiwan: population based, cross national cohort study. BMJ 387:e080127

doi: 10.1136/bmj-2024-080127
[49]

Yang CS, Chen G, Wu Q. 2014. Recent scientific studies of a traditional chinese medicine, tea, on prevention of chronic diseases. Journal of Traditional and Complementary Medicine 4:17−23

doi: 10.4103/2225-4110.124326
[50]

Yang WS, Wang WY, Fan WY, Deng Q, Wang X. 2014. Tea consumption and risk of type 2 diabetes: a dose-response meta-analysis of cohort studies. British Journal of Nutrition 111:1329−39

doi: 10.1017/S0007114513003887
[51]

Asbaghi O, Fouladvand F, Gonzalez MJ, Aghamohammadi V, Choghakhori R, et al. 2021. Effect of green tea on anthropometric indices and body composition in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Complementary Medicine Research 28:244−51

doi: 10.1159/000511665
[52]

Asbaghi O, Fouladvand F, Moradi S, Ashtary-Larky D, Choghakhori R, et al. 2020. Effect of green tea extract on lipid profile in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 14:293−301

doi: 10.1016/j.dsx.2020.03.018
[53]

Polychronopoulos E, Zeimbekis A, Kastorini CM, Papairakleous N, Vlachou I, et al. 2008. Effects of black and green tea consumption on blood glucose levels in non-obese elderly men and women from Mediterranean Islands (MEDIS epidemiological study). European Journal of Nutrition 47:10−16

doi: 10.1007/s00394-007-0690-7
[54]

Chen Y, Li W, Qiu S, Vladmir C, Xu X, et al. 2020. Tea consumption and risk of diabetes in the Chinese population: a multi-centre, cross-sectional study. British Journal of Nutrition 123:428−36

doi: 10.1017/S000711451900299X
[55]

Ma Q, Chen D, Sun HP, Yan N, Xu Y, et al. 2015. Regular Chinese green tea consumption is protective for diabetic retinopathy: a clinic-based case-control study. Journal of Diabetes Research 2015:231570

doi: 10.1155/2015/231570
[56]

Mousavi A, Vafa MR, Neyestani TR, Khamseh M, Hoseini F. 2013. The effects of green tea consumption on metabolic and anthropometric indices in patients with Type 2 diabetes. Journal of Research in Medical Sciences 18:1080−86

[57]

Mahmoud F, Haines D, Al-Ozairi E, Dashti A. 2016. Effect of black tea consumption on intracellular cytokines, regulatory T cells and metabolic biomarkers in Type 2 diabetes patients. Phytotherapy Research 30:454−62

doi: 10.1002/ptr.5548
[58]

Nagao T, Meguro S, Hase T, Otsuka K, Komikado M, et al. 2009. A catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes. Obesity 17:310−17

doi: 10.1038/oby.2008.505
[59]

Odegaard AO, Pereira MA, Koh WP, Arakawa K, Lee HP, et al. 2008. Coffee, tea, and incident type 2 diabetes: the Singapore Chinese Health Study. The American Journal of Clinical Nutrition 88:979−85

doi: 10.1093/ajcn/88.4.979
[60]

Hayashino Y, Fukuhara S, Okamura T, Tanaka T, Ueshima H, et al. 2011. High oolong tea consumption predicts future risk of diabetes among Japanese male workers: a prospective cohort study. Diabetic Medicine 28:805−10

doi: 10.1111/j.1464-5491.2011.03239.x
[61]

Zhang X, Huo Z, Jia X, Xiong Y, Li B, et al. 2024. (+)-Catechin ameliorates diabetic nephropathy injury by inhibiting endoplasmic reticulum stress-related NLRP3-mediated inflammation. Food & Function 15:5450−65

doi: 10.1039/D3FO05400D
[62]

Wang J, Jiang J, Zhao C, Shan H, Shao Z, et al. 2022. The protective effect of theaflavins on the kidney of mice with type II diabetes mellitus. Nutrients 15:201

doi: 10.3390/nu15010201
[63]

Zhang Z, Deng X, Chen R, Li Q, Sun L, et al. 2024. Effect of black tea polysaccharides on alleviating type 2 diabetes mellitus by regulating PI3K/Akt/GLUT2 pathway. Foods 13:1908

doi: 10.3390/foods13121908
[64]

Qi B, Ren D, Li T, Niu P, Zhang X, et al. 2022. Fu brick tea manages HFD/STZ-induced type 2 diabetes by regulating the gut microbiota and activating the IRS1/PI3K/Akt signaling pathway. Journal of Agricultural and Food Chemistry 70:8274−87

doi: 10.1021/acs.jafc.2c02400
[65]

Zhong J, Xu C, Reece EA, Yang P. 2016. The green tea polyphenol EGCG alleviates maternal diabetes-induced neural tube defects by inhibiting DNA hypermethylation. American Journal of Obstetrics and Gynecology 215:368.e1−368.e10

doi: 10.1016/j.ajog.2016.03.009
[66]

Wang J, Qin Y, Jiang J, Shan H, Zhao C, et al. 2023. The effect of theaflavins on the gut microbiome and metabolites in diabetic mice. Foods 12:3865

doi: 10.3390/foods12203865
[67]

Jaworsky K, DeVillez P, Basu A. 2023. The role of phytochemicals and plant-based diets in gestational diabetes: evidence from clinical trials. International Journal of Environmental Research and Public Health 20:4188

doi: 10.3390/ijerph20054188
[68]

Tsarna E, Eleftheriades A, Tsomi E, Ziogou G, Vakas P, et al. 2023. The role of diet during pregnancy in protecting against gestational diabetes mellitus in a population with mediterranean dietary habits: a cross-sectional study. Journal of Clinical Medicine 12:1857

doi: 10.3390/jcm12051857
[69]

Hinkle SN, Laughon SK, Catov JM, Olsen J, Bech BH. 2015. First trimester coffee and tea intake and risk of gestational diabetes mellitus: a study within a national birth cohort. BJOG: an International Journal of Obstetrics & Gynaecology 122:420−28

doi: 10.1111/1471-0528.12930
[70]

Mu F, Liu L, Wang W, Wang M, Wang F. 2024. Dietary factors and risk for adverse pregnancy outcome: a Mendelian randomization analysis. Food Science & Nutrition 12:8150−58

doi: 10.1002/fsn3.4412
[71]

Brüning JC, Gautam D, Burks DJ, Gillette J, Schubert M, et al. 2000. Role of brain insulin receptor in control of body weight and reproduction. Science 289:2122−25

doi: 10.1126/science.289.5487.2122
[72]

Barash IA, Cheung CC, Weigle DS, Ren H, Kabigting EB, et al. 1996. Leptin is a metabolic signal to the reproductive system. Endocrinology 137:3144−47

doi: 10.1210/endo.137.7.8770941
[73]

Maneesh M, Jayalakshmi H, Singh TA, Chakrabarti A. 2006. Impaired hypothalamic-pituitary-gonadal axis function in men with diabetes mellitus. Indian Journal of Clinical Biochemistry 21:165−68

doi: 10.1007/BF02913088
[74]

Schoeller EL, Schon S, Moley KH. 2012. The effects of type 1 diabetes on the hypothalamic, pituitary and testes axis. Cell and Tissue Research 349:839−47

doi: 10.1007/s00441-012-1387-7
[75]

Zhou J, Lin H, Xu P, Yao L, Xie Q, et al. 2020. Matcha green tea prevents obesity-induced hypothalamic inflammation via suppressing the JAK2/STAT3 signaling pathway. Food & Function 11:8987−95

doi: 10.1039/D0FO01500H
[76]

Das B, Biswas B, Ghosh A, Pakhira BP, Ghosh D. 2017. Ameliorative role of ethyl-acetate fraction of methanolic leaf extract of Camellia sinensis (green tea) on streptozotocin-induced diabetes linked testicular hypofunction in albino rat: a dose-dependent biochemical and genomic transection study. Journal of Complementary and Integrative Medicine 14:20160084

doi: 10.1515/jcim-2016-0084
[77]

Wahyuni ES, Maryatun M, Veri N, Susilawati E, Firrahmawati L, et al. 2023. Green tea extract has a protective effect on leptin and lipid profile levels due to the induction of depot medroxyprogesterone acetate. Medical Archives 77:173−77

doi: 10.5455/medarh.2023.77.173-177
[78]

Panickar KS. 2013. Effects of dietary polyphenols on neuroregulatory factors and pathways that mediate food intake and energy regulation in obesity. Molecular Nutrition & Food Research 57:34−47

doi: 10.1002/mnfr.201200431
[79]

Shen W, Pan Y, Jin B, Zhang Z, You T, et al. 2021. Effects of tea consumption on anthropometric parameters, metabolic indexes and hormone levels of women with polycystic ovarian syndrome: a systematic review and meta-analysis of randomized controlled trials. Frontiers in Endocrinology 12:736867

doi: 10.3389/fendo.2021.736867
[80]

An Y, Xu B, Wan S, Ma X, Long Y, et al. 2023. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction. Cardiovascular Diabetology 22:237

doi: 10.1186/s12933-023-01965-7
[81]

Agarwal A, Saleh RA, Bedaiwy MA. 2003. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertility and Sterility 79:829−43

doi: 10.1016/S0015-0282(02)04948-8
[82]

Huang R, Chen J, Guo B, Jiang C, Sun W. 2024. Diabetes-induced male infertility: potential mechanisms and treatment options. Molecular Medicine 30:11

doi: 10.1186/s10020-023-00771-x
[83]

Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. 2020. Beneficial properties of green tea catechins. International Journal of Molecular Sciences 21:1744

doi: 10.3390/ijms21051744
[84]

Koch W, Kukula-Koch W, Komsta Ł, Marzec Z, Szwerc W, et al. 2018. Green tea quality evaluation based on its catechins and metals composition in combination with chemometric analysis. Molecules 23:1689

doi: 10.3390/molecules23071689
[85]

Oliveira PF, Tomás GD, Dias TR, Martins AD, Rato L, et al. 2015. White tea consumption restores sperm quality in prediabetic rats preventing testicular oxidative damage. Reproductive Biomedicine Online 31:544−56

doi: 10.1016/j.rbmo.2015.06.021
[86]

Dias TR, Alves MG, Rato L, Casal S, Silva BM, et al. 2016. White tea intake prevents prediabetes-induced metabolic dysfunctions in testis and epididymis preserving sperm quality. The Journal of Nutritional Biochemistry 37:83−93

doi: 10.1016/j.jnutbio.2016.07.018
[87]

Guimarães-Ervilha LO, Ladeira LCM, Carvalho RPR, da Silva Bento IP, Bastos DSS, et al. 2021. Green tea infusion ameliorates histological damages in testis and epididymis of diabetic rats. Microscopy and Microanalysis 27:1133−45

doi: 10.1017/S1431927621012071
[88]

Kaplanoglu GT, Bahcelioglu M, Gozil R, Helvacioglu F, Buru E, et al. 2013. Effects of green tea and vitamin E in the testicular tissue of streptozotocin-induced diabetic rats. Saudi Medical Journal 34:734−43

[89]

Zhao L, Sun QY, Ge ZJ. 2021. Potential role of tea extract in oocyte development. Food & Function 12:10311−23

doi: 10.1039/D1FO01725J
[90]

Chao S, Li LJ, Lu J, Zhao SX, Zhao MH, et al. 2023. Epigallocatechin gallate improves the quality of diabetic oocytes. Biomedicine & Pharmacotherapy 159:114267

doi: 10.1016/j.biopha.2023.114267
[91]

Dias TR, Alves MG, Silva BM, Oliveira PF. 2014. Sperm glucose transport and metabolism in diabetic individuals. Molecular and Cellular Endocrinology 396:37−45

doi: 10.1016/j.mce.2014.08.005
[92]

Warzych E, Lipinska P. 2020. Energy metabolism of follicular environment during oocyte growth and maturation. Journal of Reproduction and Development 66:1−7

doi: 10.1262/jrd.2019-102
[93]

Scazzocchio B, Filardi T, Vari R, Brunelli R, Galoppi P, et al. 2021. Protocatechuic acid influences immune-metabolic changes in the adipose tissue of pregnant women with gestational diabetes mellitus. Food & Function 12:7490−500

doi: 10.1039/D1FO00267H
[94]

Zhang X, Li Q, Han N, Song C, Lin Y, et al. 2023. Effects of Fu brick tea polysaccharides on gut microbiota and fecal metabolites of HFD/STZ-induced type 2 diabetes rats. Food & Function 14:10910−23

doi: 10.1039/D3FO04215D
[95]

Zeng H, Liu C, Wan L, Peng L, Wen S, et al. 2024. (−)-Epicatechin ameliorates type 2 diabetes mellitus by reshaping the gut microbiota and Gut−Liver axis in GK rats. Food Chemistry 447:138916

doi: 10.1016/j.foodchem.2024.138916
[96]

Zhou H, Li F, Wu M, Zhu J, Wang Y, et al. 2023. Regulation of glucolipid metabolism and gut microbiota by green and black teas in hyperglycemic mice. Food & Function 14:4327−38

doi: 10.1039/D3FO00355H
[97]

Lv C, Cheng L, Feng W, Xie H, Kou J, et al. 2024. Targeting microbiota-immune-synaptic plasticity to explore the effect of tea polyphenols on improving memory in the aged type 2 diabetic rat model. Nutritional Neuroscience 27:1422−38

doi: 10.1080/1028415X.2024.2341188
[98]

Mayer-Davis E, Leidy H, Mattes R, Naimi T, Novotny R, et al. 2020. Beverage consumption during pregnancy and birth weight: a systematic review. Alexandria (VA): USDA Nutrition Evidence Systematic Review

doi: 10.52570/NESR.DGAC2020.SR0402
[99]

Lu JH, He JR, Shen SY, Wei XL, Chen NN, et al. 2017. Does tea consumption during early pregnancy have an adverse effect on birth outcomes? Birth 44:281−89

doi: 10.1111/birt.12285
[100]

Yi M, Wu X, Zhuang W, Xia L, Chen Y, et al. 2019. Tea consumption and health outcomes: umbrella review of meta-analyses of observational studies in humans. Molecular Nutrition & Food Research 63:e1900389

doi: 10.1002/mnfr.201900389
[101]

Chen X, Wang Y, Wu Y, Han B, Zhu Y, et al. 2011. Green tea polysaccharide-conjugates protect human umbilical vein endothelial cells against impairments triggered by high glucose. International Journal of Biological Macromolecules 49:50−54

doi: 10.1016/j.ijbiomac.2011.03.008
[102]

Toth C, Brussee V, Cheng C, Zochodne DW. 2004. Diabetes mellitus and the sensory neuron. Journal of Neuropathology & Experimental Neurology 63:561−73

doi: 10.1093/jnen/63.6.561
[103]

Qi X, Yun C, Pang Y, Qiao J. 2021. The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microbes 13:1894070

doi: 10.1080/19490976.2021.1894070
[104]

Yan X, Feng Y, Hao Y, Zhong R, Jiang Y, et al. 2022. Gut-Testis axis: microbiota prime metabolome to increase sperm quality in young type 2 diabetes. Microbiology Spectrum 10:e01423-22

doi: 10.1128/spectrum.01423-22