[1]

Bai Q, Huang Y, Shen Y. 2021. The physiological and molecular mechanism of abscisic acid in regulation of fleshy fruit ripening. Frontiers in Plant Science 11:619953

doi: 10.3389/fpls.2020.619953
[2]

Gao S, Gao J, Zhu X, Song Y, Li Z, et al. 2016. ABF2, ABF3, and ABF4 promote ABA-mediated chlorophyll degradation and leaf senescence by transcriptional activation of chlorophyll catabolic genes and senescence-associated genes in Arabidopsis. Molecular Plant 9:1272−85

doi: 10.1016/j.molp.2016.06.006
[3]

Singh A, Roychoudhury A. 2023. Abscisic acid in plants under abiotic stress: crosstalk with major phytohormones. Plant Cell Reports 42:961−74

doi: 10.1007/s00299-023-03013-w
[4]

Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, et al. 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068−71

doi: 10.1126/science.1173041
[5]

Gul S, Gul H, Shahzad M, Ullah I, Shahzad A, et al. 2024. Comprehensive analysis of potato (Solanum tuberosum) PYL genes highlights their role in stress responses. Functional Plant Biology 51:FP24094

doi: 10.1071/FP24094
[6]

Rodriguez PL, Lozano-Juste J, Albert A. 2019. PYR/PYL/RCAR ABA receptors. In Advances in botanical research, eds. Seo M, Marion-Poll A. Volume 92. Amsterdam, Netherlands: Academic Press. pp. 51−82. doi: 10.1016/bs.abr.2019.05.003

[7]

Lee HY, Jang G, Um T, Kim JK, Lee JS, et al. 2015. The soluble ABA receptor PYL8 regulates drought resistance by controlling ABA signaling in Arabidopsis. Plant Biotechnology Reports 9:319−30

doi: 10.1007/s11816-015-0366-3
[8]

Shi H, Ye T, Zhu JK, Chan Z. 2014. Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis. Journal of Experimental Botany 65:4119−31

doi: 10.1093/jxb/eru184
[9]

Kim H, Lee K, Hwang H, Bhatnagar N, Kim DY, et al. 2014. Overexpression of PYL5 in rice enhances drought tolerance, inhibits growth, and modulates gene expression. Journal of Experimental Botany 65:453−64

doi: 10.1093/jxb/ert397
[10]

Yang Z, Liu J, Tischer SV, Christmann A, Windisch W, et al. 2016. Leveraging abscisic acid receptors for efficient water use in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 113:6791−96

doi: 10.1073/pnas.1601954113
[11]

Miao C, Xiao L, Hua K, Zou C, Zhao Y, et al. 2018. Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proceedings of the National Academy of Sciences of the United States of America 115:6058−63

doi: 10.1073/pnas.1804774115
[12]

Zhao Y, Chan Z, Gao J, Xing L, Cao M, et al. 2016. ABA receptor PYL9 promotes drought resistance and leaf senescence. Proceedings of the National Academy of Sciences of the United States of America 113:1949−54

doi: 10.1073/pnas.1522840113
[13]

Lee H-N, Lee KH, Kim CS. 2015. Abscisic acid receptor PYRABACTIN RESISTANCE-LIKE 8, PYL8, is involved in glucose response and dark-induced leaf senescence in Arabidopsis. Biochemical Biophysical Research Communications 463:24−28

doi: 10.1016/j.bbrc.2015.05.010
[14]

Shah FA, Chen Z, Ni F, Kamal KA, Zhang J, et al. 2024. ArNAC148 induces Acer rubrum leaf senescence by activating the transcription of the ABA receptor gene ArPYR13. International Journal of Biological Macromolecules 279:134950

doi: 10.1016/j.ijbiomac.2024.134950
[15]

Zou J, Li N, Hu N, Tang N, Cao H, et al. 2022. Co-silencing of ABA receptors (SlRCAR) reveals interactions between ABA and ethylene signaling during tomato fruit ripening. Horticulture Research 9:uhac057

doi: 10.1093/hr/uhac057
[16]

Kai W, Wang J, Liang B, Fu Y, Zheng Y, et al. 2019. PYL9 is involved in the regulation of ABA signaling during tomato fruit ripening. Journal of Experimental Botany 70:6305−19

doi: 10.1093/jxb/erz396
[17]

Tang N, Deng W, Hu G, Hu N, Li Z. 2015. Transcriptome profiling reveals the regulatory mechanism underlying pollination dependent and parthenocarpic fruit set mainly mediated by auxin and gibberellin. PLoS One 10:e0125355

doi: 10.1371/journal.pone.0125355
[18]

Xian Z, Yang Y, Huang W, Tang N, Wang X, et al. 2013. Molecular cloning and characterisation of SlAGO family in tomato. BMC Plant Biology 13:126

doi: 10.1186/1471-2229-13-126
[19]

Tang N, An J, Deng W, Gao Y, Chen Z, et al. 2020. Metabolic and transcriptional regulatory mechanism associated with postharvest fruit ripening and senescence in cherry tomatoes. Postharvest Biology and Technology 168:111274

doi: 10.1016/j.postharvbio.2020.111274
[20]

Dittrich M, Mueller HM, Bauer H, Peirats-Llobet M, Rodriguez PL, et al. 2019. The role of Arabidopsis ABA receptors from the PYR/PYL/RCAR family in stomatal acclimation and closure signal integration. Nature Plants 5:1002−11

doi: 10.1038/s41477-019-0490-0
[21]

Yadav SK, Santosh Kumar VV, Verma RK, Yadav P, Saroha A, et al. 2020. Genome-wide identification and characterization of ABA receptor PYL gene family in rice. BMC Genomics 21:676

doi: 10.1186/s12864-020-07083-y
[22]

Zhang Z, Luo S, Liu Z, Wan Z, Gao X, et al. 2022. Genome-wide identification and expression analysis of the cucumber PYL gene family. PeerJ 10:e12786

doi: 10.7717/peerj.12786
[23]

Zhang R, Wang Y, Li S, Yang L, Liang Z. 2021. ABA signaling pathway genes and function during abiotic stress and berry ripening in Vitis vinifera. Gene 769:145226

doi: 10.1016/j.gene.2020.145226
[24]

Jia S, Lu B, Wang Y, Sun Q. 2025. Genome-wide characterization of the ABA receptor pyrabactin resistance 1-like (PYL) gene family in strawberry and functional assessment of FaPYL3 and FaPYL4 in fruit ripening. Horticulturae 11:292

doi: 10.3390/horticulturae11030292
[25]

Liu J, Wang Y, Li Z, Wen Q, Zhu H, He S. 2025. Genome-wide identification and expression analyses of the abscisic acid receptor PYR/PYL gene family in response to fruit development and exogenous abscisic acid in Luffa (Luffa cylindrica L.). Agronomy 15:598

doi: 10.3390/agronomy15030598
[26]

Sun L, Wang YP, Chen P, Ren J, Ji K, et al. 2011. Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress. Journal of Experimental Botany 62:5659−69

doi: 10.1093/jxb/err252
[27]

González-Guzmán M, Rodríguez L, Lorenzo-Orts L, Pons C, Sarrion-Perdigones A, et al. 2014. Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance. Journal of Experimental Botany 65:4451−64

doi: 10.1093/jxb/eru219
[28]

Okamoto M, Peterson FC, Defries A, Park SY, Endo A, et al. 2013. Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proceedings of the National Academy of Sciences of the United States of America 110:12132−37

doi: 10.1073/pnas.1305919110
[29]

Vaidya AS, Helander JDM, Peterson FC, Elzinga D, Dejonghe W, et al. 2019. Dynamic control of plant water use using designed ABA receptor agonists. Science 366:eaaw8848

doi: 10.1126/science.aaw8848
[30]

Wang ZZ, Cao MJ, Yan J, Dong J, Chen MX, et al. 2024. Stabilization of dimeric PYR/PYL/RCAR family members relieves abscisic acid-induced inhibition of seed germination. Nature Communications 15:8077

doi: 10.1038/s41467-024-52426-y
[31]

Wang Z, Ren Z, Cheng C, Wang T, Ji H, et al. 2020. Counteraction of ABA-mediated inhibition of seed germination and seedling establishment by ABA signaling terminator in Arabidopsis. Molecular Plant 13:1284−97

doi: 10.1016/j.molp.2020.06.011
[32]

Zhao H, Nie K, Zhou H, Yan X, Zhan Q, et al. 2020. ABI5 modulates seed germination via feedback regulation of the expression of the PYR/PYL/RCAR ABA receptor genes. New Phytologist 228:596−608

doi: 10.1111/nph.16713
[33]

Zhang Z, Wang W, Ali S, Luo X, Xie L. 2022. CRISPR/Cas9-mediated multiple knockouts in abscisic acid receptor genes reduced the sensitivity to ABA during soybean seed germination. International Journal of Molecular Sciences 23:16173

doi: 10.3390/ijms232416173
[34]

Liu JL, Zhang CX, Li TT, Liang CL, Yang YJ, et al. 2022. Phenotype and mechanism analysis of plant dwarfing in pear regulated by abscisic acid. Journal of Integrative Agriculture 21:1346−56

doi: 10.1016/S2095-3119(21)63786-3
[35]

Yao P, Zhang C, Sun C, Liu Y, Liu Z, et al. 2024. The abscisic acid receptor gene StPYL8-like from Solanum tuberosum confers tolerance to drought stress in transgenic plants. Antioxidants 13:1088

doi: 10.3390/antiox13091088
[36]

Shu K, Chen Q, Wu Y, Liu R, Zhang H, et al. 2016. ABI4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels. The Plant Journal 85:348−61

doi: 10.1111/tpj.13109
[37]

Wang Y, Zhao J, Lu W, Deng D. 2017. Gibberellin in plant height control: old player, new story. Plant Cell Reports 36:391−98

doi: 10.1007/s00299-017-2104-5
[38]

Zegeye WA, Chen D, Islam M, Wang H, Riaz A, et al. 2022. OsFBK4, a novel GA insensitive gene positively regulates plant height in rice (Oryza Sativa L.). Ecological Genetics and Genomics 23:100115

doi: 10.1016/j.egg.2022.100115
[39]

Galpaz N, Wang Q, Menda N, Zamir D, Hirschberg J. 2008. Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. The Plant Journal 53:717−30

doi: 10.1111/j.1365-313X.2007.03362.x
[40]

Jia D, Li Y, Jia K, Huang B, Dang Q, et al. 2024. Abscisic acid activates transcription factor module MdABI5-MdMYBS1 during carotenoid-derived apple fruit coloration. Plant Physiology 195:2053−72

doi: 10.1093/plphys/kiae188
[41]

Zhai X, Li Q, Li B, Gao X, Liao X, et al. 2025. Overexpression of the persimmon ABA receptor DkPYL3 gene alters fruit development and ripening in transgenic tomato. Plant Science 350:112287

doi: 10.1016/j.plantsci.2024.112287
[42]

Jia M, Feng J, Zhang L, Zhang S, Xi W. 2022. PaPYL9 is involved in the regulation of apricot fruit ripening through ABA signaling pathway. Horticultural Plant Journal 8:461−73

doi: 10.1016/j.hpj.2021.11.012
[43]

Takasaki H, Maruyama K, Takahashi F, Fujita M, Yoshida T, et al. 2015. SNAC-As, stress-responsive NAC transcription factors, mediate ABA-inducible leaf senescence. The Plant Journal 84:1114−23

doi: 10.1111/tpj.13067
[44]

Miret JA, Munné-Bosch S, Dijkwel PP. 2018. ABA signalling manipulation suppresses senescence of a leafy vegetable stored at room temperature. Plant Biotechnology Journal 16:530−44

doi: 10.1111/pbi.12793
[45]

Lenka SK, Muthusamy SK, Chinnusamy V, Bansal KC. 2018. Ectopic expression of rice PYL3 enhances cold and drought tolerance in Arabidopsis thaliana. Molecular Biotechnology 60:350−61

doi: 10.1007/s12033-018-0076-5
[46]

Li J, Xu Y, Niu Q, He L, Teng Y, et al. 2018. Abscisic acid (ABA) promotes the induction and maintenance of pear (Pyrus pyrifolia white pear group) flower bud endodormancy. International Journal of Molecular Sciences 19:310

doi: 10.3390/ijms19010310
[47]

Liu J, Sherif SM. 2019. Hormonal orchestration of bud dormancy cycle in deciduous woody perennials. Frontiers in Plant Science 10:1136

doi: 10.3389/fpls.2019.01136
[48]

Huang X, Xiao N, Xie Y, Xu C. 2025. ROS burst prolongs transcriptional condensation to slow shoot apical meristem maturation and achieve heat-stress resilience in tomato. Developmental Cell 60:1−14

doi: 10.1016/j.devcel.2025.03.007
[49]

Zhao Q, Guan X, Zhou L, Asad MAU, Xu Y, et al. 2023. ABA-triggered ROS burst in rice developing anthers is critical for tapetal programmed cell death induction and heat stress-induced pollen abortion. Plant, Cell & Environment 46:1453−71

doi: 10.1111/pce.14551
[50]

Cao J, Jin Q, Kuang J, Wang Y, Xu Y. 2021. Regulation of flowering timing by ABA-NnSnRK1 signaling pathway in lotus. International Journal of Molecular Sciences 22:3932

doi: 10.3390/ijms22083932