[1]

Hollwey E, Briffa A, Howard M, Zilberman D. 2023. Concepts, mechanisms and implications of long-term epigenetic inheritance. Current Opinion in Genetics & Development 81:102087

doi: 10.1016/j.gde.2023.102087
[2]

Brukhin V, Albertini E. 2021. Epigenetic modifications in plant development and reproduction. Epigenomes 5:25

doi: 10.3390/epigenomes5040025
[3]

Zhang H, Lang Z, Zhu JK. 2018. Dynamics and function of DNA methylation in plants. Nature Reviews Molecular Cell Biology 19:489−506

doi: 10.1038/s41580-018-0016-z
[4]

Zhang H, Zhu JK. 2025. Epigenetic gene regulation in plants and its potential applications in crop improvement. Nature Reviews Molecular Cell Biology 26:51−67

doi: 10.1038/s41580-024-00769-1
[5]

Zhu JK. 2009. Active DNA demethylation mediated by DNA glycosylases. Annual Review of Genetics 43:143−66

doi: 10.1146/annurev-genet-102108-134205
[6]

Hu L, Li N, Xu C, Zhong S, Lin X, et al. 2014. Mutation of a major CG methylase in rice causes genome-wide hypomethylation, dysregulated genome expression, and seedling lethality. Proceedings of the National Academy of Sciences of the United States of America 111:10642−47

doi: 10.1073/pnas.1410761111
[7]

Wang L, Zheng K, Zeng L, Xu D, Zhu T, et al. 2022. Reinforcement of CHH methylation through RNA-directed DNA methylation ensures sexual reproduction in rice. Plant Physiology 188:1189−209

doi: 10.1093/plphys/kiab531
[8]

Cheng Y, Zhou Y, Wang M. 2024. Targeted gene regulation through epigenome editing in plants. Current Opinion in Plant Biology 80:102552

doi: 10.1016/j.pbi.2024.102552
[9]

Liu J, Wu X, Yao X, Yu R, Larkin PJ, et al. 2018. Mutations in the DNA demethylase OsROS1 result in a thickened aleurone and improved nutritional value in rice grains. Proceedings of the National Academy of Sciences of the United States of America 115:11327−32

doi: 10.1073/pnas.1806304115
[10]

Calarco JP, Borges F, Donoghue MTA, Van Ex F, Jullien PE, et al. 2012. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:194−205

doi: 10.1016/j.cell.2012.09.001
[11]

Khouider S, Borges F, LeBlanc C, Ungru A, Schnittger A, et al. 2021. Male fertility in Arabidopsis requires active DNA demethylation of genes that control pollen tube function. Nature Communications 12:410

doi: 10.1038/s41467-020-20606-1
[12]

Lang Z, Wang Y, Tang K, Tang D, Datsenka T, et al. 2017. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proceedings of the National Academy of Sciences of the United States of America 114:E4511−E4519

doi: 10.1073/pnas.1705233114
[13]

Tang D, Gallusci P, Lang Z. 2020. Fruit development and epigenetic modifications. New Phytologist 228:839−44

doi: 10.1111/nph.16724
[14]

Kouzarides T. 2007. Chromatin modifications and their function. Cell 128:693−705

doi: 10.1016/j.cell.2007.02.005
[15]

Liu C, Lu F, Cui X, Cao X. 2010. Histone methylation in higher plants. Annual Review of Plant Biology 61:395−420

doi: 10.1146/annurev.arplant.043008.091939
[16]

Scheid R, Chen J, Zhong X. 2021. Biological role and mechanism of chromatin readers in plants. Current Opinion in Plant Biology 61:102008

doi: 10.1016/j.pbi.2021.102008
[17]

Yu Y, Wang S, Wang Z, Gao R, Lee J. 2023. Arabidopsis thaliana: a powerful model organism to explore histone modifications and their upstream regulations. Epigenetics 18:2211362

doi: 10.1080/15592294.2023.2211362
[18]

Zhao L, Yang Y, Chen J, Lin X, Zhang H, et al. 2023. Dynamic chromatin regulatory programs during embryogenesis of hexaploid wheat. Genome Biology 24:7

doi: 10.1186/s13059-022-02844-2
[19]

Xu Q, Ma X, Wei X, Chen Z, Duan Y, et al. 2025. Histone H4K8hib modification promotes gene expression and regulates rice immunity. Molecular Plant 18:9−13

doi: 10.1016/j.molp.2024.12.003
[20]

St Laurent G, Wahlestedt C, Kapranov P. 2015. The landscape of long noncoding RNA classification. Trends in Genetics 31:239−51

doi: 10.1016/j.tig.2015.03.007
[21]

Wei JW, Huang K, Yang C, Kang CS. 2017. Non-coding RNAs as regulators in epigenetics (review). Oncology Reports 37:3−9

doi: 10.3892/or.2016.5236
[22]

Thieffry A, Vigh ML, Bornholdt J, Ivanov M, Brodersen P, et al. 2020. Characterization of Arabidopsis thaliana promoter bidirectionality and antisense RNAs by inactivation of nuclear RNA decay pathways. The Plant Cell 32:1845−67

doi: 10.1105/tpc.19.00815
[23]

Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, et al. 2007. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics 39:1033−37

doi: 10.1038/ng2079
[24]

Zhou D, Du Q, Chen J, Wang Q, Zhang D. 2017. Identification and allelic dissection uncover roles of lncRNAs in secondary growth of Populus tomentosa. DNA Research 24:473−86

doi: 10.1093/dnares/dsx018
[25]

Yu Y, Zhang Y, Chen X, Chen Y. 2019. Plant noncoding RNAs: hidden players in development and stress responses. Annual Review of Cell and Developmental Biology 35:407−31

doi: 10.1146/annurev-cellbio-100818-125218
[26]

Cheng YJ, Shang GD, Xu ZG, Yu S, Wu LY, et al. 2021. Cell division in the shoot apical meristem is a trigger for miR156 decline and vegetative phase transition in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 118:e2115667118

doi: 10.1073/pnas.2115667118
[27]

Wang Y, Luo Z, Zhao X, Cao H, Wang L, et al. 2023. Superstar microRNA, miR156, involved in plant biological processes and stress response: a review. Scientia Horticulturae 316:112010

doi: 10.1016/j.scienta.2023.112010
[28]

Hudzik C, Hou Y, Ma W, Axtell MJ. 2020. Exchange of small regulatory RNAs between plants and their pests. Plant Physiology 182:51−62

doi: 10.1104/pp.19.00931
[29]

Axtell MJ. 2013. Classification and comparison of small RNAs from plants. Annual Review of Plant Biology 64:137−59

doi: 10.1146/annurev-arplant-050312-120043
[30]

Shi C, Zhang J, Wu B, Jouni R, Yu C, et al. 2022. Temperature-sensitive male sterility in rice determined by the roles of AGO1d in reproductive phasiRNA biogenesis and function. New Phytologist 236:1529−44

doi: 10.1111/nph.18446
[31]

Deng Y, Zhai K, Xie Z, Yang D, Zhu X, et al. 2017. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355:962−65

doi: 10.1126/science.aai8898
[32]

Zhang H, Tao Z, Hong H, Chen Z, Wu C, et al. 2016. Transposon-derived small RNA is responsible for modified function of WRKY45 locus. Nature Plants 2:16016

doi: 10.1038/nplants.2016.16
[33]

Bravo-Vázquez LA, Méndez-García A, Chamu-García V, Rodríguez AL, Bandyopadhyay A, et al. 2023. The applications of CRISPR/Cas-mediated microRNA and lncRNA editing in plant biology: shaping the future of plant non-coding RNA research. Planta 259:32

doi: 10.1007/s00425-023-04303-z
[34]

Guo J, He XJ. 2024. Composition and function of plant chromatin remodeling complexes. Current Opinion in Plant Biology 81:102613

doi: 10.1016/j.pbi.2024.102613
[35]

Shang JY, He XJ. 2022. Chromatin-remodeling complexes: conserved and plant-specific subunits in Arabidopsis. Journal of Integrative Plant Biology 64:499−515

doi: 10.1111/jipb.13208
[36]

Tourdot E, Grob S. 2023. Three-dimensional chromatin architecture in plants–general features and novelties. European Journal of Cell Biology 102:151344

doi: 10.1016/j.ejcb.2023.151344
[37]

Du K, Wu J, Wang J, Xie W, Yin L, et al. 2024. The chromatin remodeling factor OsINO80 promotes H3K27me3 and H3K9me2 deposition and maintains TE silencing in rice. Nature Communications 15:10919

doi: 10.1038/s41467-024-55387-4
[38]

Huang Y, An J, Sircar S, Bergis C, Lopes CD, et al. 2023. HSFA1a modulates plant heat stress responses and alters the 3D chromatin organization of enhancer-promoter interactions. Nature Communications 14:469

doi: 10.1038/s41467-023-36227-3
[39]

Cao S, Chen ZJ. 2024. Transgenerational epigenetic inheritance during plant evolution and breeding. Trends in Plant Science 29:1203−23

doi: 10.1016/j.tplants.2024.04.007
[40]

Song Q, Zhang T, Stelly DM, Chen ZJ. 2017. Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons. Genome Biology 18:99

doi: 10.1186/s13059-017-1229-8
[41]

Zhang YY, Latzel V, Fischer M, Bossdorf O. 2018. Understanding the evolutionary potential of epigenetic variation: a comparison of heritable phenotypic variation in epiRILs, RILs, and natural ecotypes of Arabidopsis thaliana. Heredity 121:257−65

doi: 10.1038/s41437-018-0095-9
[42]

Nuñez JK, Chen J, Pommier GC, Cogan JZ, Replogle JM, et al. 2021. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184:2503−2519.e17

doi: 10.1016/j.cell.2021.03.025
[43]

Shin H, Choi WL, Lim JY, Huh JH. 2022. Epigenome editing: targeted manipulation of epigenetic modifications in plants. Genes & Genomics 44:307−15

doi: 10.1007/s13258-021-01199-5
[44]

Gallego-Bartolomé J, Liu W, Kuo PH, Feng S, Ghoshal B, et al. 2019. Co-targeting RNA polymerases IV and V promotes efficient de novo DNA methylation in Arabidopsis. Cell 176:1068−1082.e19

doi: 10.1016/j.cell.2019.01.029
[45]

Gallego-Bartolomé J, Gardiner J, Liu W, Papikian A, Ghoshal B, et al. 2018. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proceedings of the National Academy of Sciences of the United States of America 115:E2125−E2134

doi: 10.1073/pnas.1716945115
[46]

Wang M, He Y, Zhong Z, Papikian A, Wang S, et al. 2025. Histone H3 lysine 4 methylation recruits DNA demethylases to enforce gene expression in Arabidopsis. Nature Plants 11:206−17

doi: 10.1038/s41477-025-01924-y
[47]

Li X, Bu F, Zhang M, Li Z, Zhang Y, et al. 2025. Enhancing nature's palette through the epigenetic breeding of flower color in Chrysanthemum. New Phytologist 245:2117−32

doi: 10.1111/nph.20347
[48]

Raju SKK, Shao MR, Sanchez R, Xu YZ, Sandhu A, et al. 2018. An epigenetic breeding system in soybean for increased yield and stability. Plant Biotechnology Journal 16:1836−47

doi: 10.1111/pbi.12919
[49]

Walker J, Zhang J, Liu Y, Xu S, Yu Y, et al. 2025. Extensive N4 cytosine methylation is essential for Marchantia sperm function. Cell 188(11):2890−2906.e14

doi: 10.1016/j.cell.2025.03.014
[50]

Ueda J, Yamazaki T, Funakoshi H. 2023. Toward the development of epigenome editing-based therapeutics: potentials and challenges. International Journal of Molecular Sciences 24:4778

doi: 10.3390/ijms24054778