[1]

Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, et al. 2013. Bounding the role of black carbon in the climate system: a scientific assessment. Journal of Geophysical Research: Atmospheres 118:5380−552

doi: 10.1002/jgrd.50171
[2]

McEnally, CS, Das DD, Pfefferle LD. 2017. Yield Sooting Index Database. Volume 2: Sooting Tendencies of a Wide Range of Fuel Compounds on a Unified Scale. Cambridge, MA, USA: Harvard Dataverse, Harvard University

[3]

Das DD, St John PC, McEnally CS, Kim S, Pfefferle LD. 2018. Measuring and predicting sooting tendencies of oxygenates, alkanes, alkenes, cycloalkanes, and aromatics on a unified scale. Combustion and Flame 190:349−64

doi: 10.1016/j.combustflame.2017.12.005
[4]

McEnally CS, Pfefferle LD. 2007. Improved sooting tendency measurements for aromatic hydrocarbons and their implications for naphthalene formation pathways. Combustion and Flame 148:210−22

doi: 10.1016/j.combustflame.2006.11.003
[5]

Cheng X, Ren F, Gao Z, Zhu L, Huang Z. 2022. Synergistic effect analysis on sooting tendency based on soot-specialized artificial neural network algorithm with experimental and numerical validation. Fuel 315:122538

doi: 10.1016/j.fuel.2021.122538
[6]

Han J. 2022. CFD Modeling of Ignition and Soot Formation for Advanced Compression-Ignition Engines. Ph. D. Thesis. The Pennsylvania State University, University Park, PA, USA

[7]

St John PC, Kairys P, Das DD, McEnally CS, Pfefferle LD, et al. 2017. A quantitative model for the prediction of sooting tendency from molecular structure. Energy & Fuels 31:9983−90

doi: 10.1021/acs.energyfuels.7b00616
[8]

Pepiot-Desjardins P, Pitsch H, Malhotra R, Kirby SR, Boehman AL. 2008. Structural group analysis for soot reduction tendency of oxygenated fuels. Combustion and Flame 154:191−205

doi: 10.1016/j.combustflame.2008.03.017
[9]

Barrientos EJ, Lapuerta M, Boehman AL. 2013. Group additivity in soot formation for the example of C-5 oxygenated hydrocarbon fuels. Combustion and Flame 160:1484−98

doi: 10.1016/j.combustflame.2013.02.024
[10]

Gao Z, Zou X, Huang Z, Zhu L. 2019. Predicting sooting tendencies of oxygenated hydrocarbon fuels with machine learning algorithms. Fuel 242:438−46

doi: 10.1016/j.fuel.2019.01.064
[11]

Abdul Jameel AG. 2021. Predicting sooting propensity of oxygenated fuels using artificial neural networks. Processes 9:1070

doi: 10.3390/pr9061070
[12]

Cai G, Liu Z, Zhang L, Shi Q, Zhao S, et al. 2021. Systematic performance evaluation of gasoline molecules based on quantitative structure-property relationship models. Chemical Engineering Science 229:116077

doi: 10.1016/j.ces.2020.116077
[13]

Li R, Herreros JM, Tsolakis A, Yang W. 2021. Machine learning-quantitative structure property relationship (ML-QSPR) method for fuel physicochemical properties prediction of multiple fuel types. Fuel 304:121437

doi: 10.1016/j.fuel.2021.121437
[14]

Chen Z, Vom Lehn F, Pitsch H, Cai L. 2023. Prediction of sooting index of fuel compounds for spark-ignition engine applications based on a machine learning approach. Journal of Thermal Science 32:521−30

doi: 10.1007/s11630-023-1765-3
[15]

vom Lehn F, Cai L, Copa Cáceres B, Pitsch H. 2021. Exploring the fuel structure dependence of laminar burning velocity: a machine learning based group contribution approach. Combustion and Flame 232:111525

doi: 10.1016/j.combustflame.2021.111525
[16]

Kessler T, St John PC, Zhu J, McEnally CS, Pfefferle LD, et al. 2021. A comparison of computational models for predicting yield sooting index. Proceedings of the Combustion Institute 38(1):1385−93

doi: 10.1016/j.proci.2020.07.009
[17]

Gulli A, Pal S. 2017. Deep learning with Keras. vol. 1. Birmingham, UK: Packt Publishing Ltd. 296 pp. www.packtpub.com/product/deep-learning-with-keras/9781787128422

[18]

vom Lehn F, Cai L, Tripathi R, Broda R, Pitsch H. 2021. A property database of fuel compounds with emphasis on spark-ignition engine applications. Applications in Energy and Combustion Science 5:100018

doi: 10.1016/j.jaecs.2020.100018
[19]

Joback KG, Reid RC. 1987. Estimation of pure-component properties from group-contributions. Chemical Engineering Communications 57:233−43

doi: 10.1080/00986448708960487
[20]

vom Lehn F, Brosius B, Broda R, Cai L, Pitsch H. 2020. Using machine learning with target-specific feature sets for structure-property relationship modeling of octane numbers and octane sensitivity. Fuel 281:118772

doi: 10.1016/j.fuel.2020.118772
[21]

Nagaraja SS, Sarathy SM, Mohan B, Chang J. 2024. Machine learning-driven screening of fuel additives for increased spark-ignition engine efficiency. Proceedings of the Combustion Institute 40:105658

doi: 10.1016/j.proci.2024.105658
[22]

Katritzky AR, Lobanov VS, Karelson M. 1995. QSPR: the correlation and quantitative prediction of chemical and physical properties from structure. Chemical Society Reviews 24:279−87

doi: 10.1039/CS9952400279
[23]

Landrum Gl. 2013. Rdkit: a software suite for cheminformatics, computational chemistry, and predictive modeling. www.rdkit.org/RDKit_Overview.pdf

[24]

Weininger D. 1988. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. Journal of Chemical Information and Computer Sciences 28:31−36

doi: 10.1021/ci00057a005
[25]

Kohavi R, Sommerfield D. 1995. Feature subset selection using the wrapper method: overfltting and dynamic search space topology. Proc. First International Conference on Knowledge Discovery and Data Mining, Montreal, Canada, 1995. Menlo Park, CA: AAAI Press. pp. 192–97. https://cdn.aaai.org/KDD/1995/KDD95-049.pdf

[26]

Kingma DP, Ba JL. 2015. Adam: a method for stochastic optimization. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, San Diego, USA. Ithaca, NY: arXiv.org. pp. 1−10. doi: 10.48550/arXiv.1412.6980

[27]

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, et al. 2016. Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv Preprint:1−10

doi: 10.48550/arXiv.1603.04467
[28]

Gevrey M, Dimopoulos I, Lek S. 2003. Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecological Modelling 160:249−64

doi: 10.1016/S0304-3800(02)00257-0
[29]

Das DD, McEnally CS, Kwan TA, Zimmerman JB, Cannella WJ, et al. 2017. Sooting tendencies of diesel fuels, jet fuels, and their surrogates in diffusion flames. Fuel 197:445−58

doi: 10.1016/j.fuel.2017.01.099