| [1] |
Coyne JA. 1992. Genetics and speciation. |
| [2] |
Hopkins R, Rausher MD. 2012. Pollinator-mediated selection on flower color allele drives reinforcement. |
| [3] |
Siddique MA, Grossmann J, Gruissem W, Baginsky S. 2006. Proteome analysis of bell pepper (Capsicum annuum L.) chromoplasts. |
| [4] |
Koes R, Verweij W, Quattrocchio F. 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. |
| [5] |
Rodriguez-Concepcion M, Avalos J, Luisa Bonet ML, Boronat A, Gomez-Gomez L, et al. 2018. A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health. |
| [6] |
Lu C, Pu Y, Liu Y, Li Y, Qu J, et al. 2019. Comparative transcriptomics and weighted gene co-expression correlation network analysis (WGCNA) reveal potential regulation mechanism of carotenoid accumulation in Chrysanthemum × morifolium. |
| [7] |
Cui L, Zheng F, Zhang C, Gao S, Ye J, et al. 2025. The CONSTANS-LIKE SlCOL1 in tomato regulates the fruit chlorophyll content by stabilizing the GOLDEN2-LIKE protein. |
| [8] |
Chen H, Ji H, Huang W, Zhang Z, Zhu K, et al. 2024. Transcription factor CrWRKY42 coregulates chlorophyll degradation and carotenoid biosynthesis in citrus. |
| [9] |
Hao Z, Liu S, Hu L, Shi J, Chen J. 2020. Transcriptome analysis and metabolic profiling reveal the key role of carotenoids in the petal coloration of Liriodendron tulipifera. |
| [10] |
Hao Q, Li T, Lu G, Wang S, Li Z, et al. 2025. Chlorophyllase (PsCLH1) and light-harvesting chlorophyll a/b binding protein 1 (PsLhcb1) and PsLhcb5 maintain petal greenness in Paeonia suffruticosa 'Lv Mu Yin Yu'. |
| [11] |
Zheng X, Lan J, Yu H, Zhang J, Zhang Y, et al. 2022. Arabidopsis transcription factor TCP4 represses chlorophyll biosynthesis to prevent petal greening. |
| [12] |
Fang J, Liu S, Chen S, Deng H, Zhao L, et al. 2025. A R1-type MYB CmREVEILLE2 regulates light-mediated chlorophyll biosynthesis and green color formation in chrysanthemum flowers. |
| [13] |
Lopez-Juez E, Pyke KA. 2005. Plastids unleashed: their development and their integration in plant development. |
| [14] |
Jarvis P, López-Juez E. 2013. Biogenesis and homeostasis of chloroplasts and other plastids. |
| [15] |
Schweiggert RM, Steingass CB, Heller A, Esquivel P, Carle R. 2011. Characterization of chromoplasts and carotenoids of red- and yellow-fleshed papaya (Carica papaya L.). |
| [16] |
Zeng Y, Du J, Wang L, Pan Z, Xu Q, et al. 2015. A comprehensive analysis of chromoplast differentiation reveals complex protein changes associated with plastoglobule biogenesis and remodeling of protein systems in sweet orange flesh. |
| [17] |
Suzuki M, Takahashi S, Kondo T, Dohra H, Ito Y, et al. 2015. Plastid proteomic analysis in tomato fruit development. |
| [18] |
Frey-Wyssling A, Kreutzer E. 1958. The submicroscopic development of chromoplasts in the fruit of Capsicum annuum L. |
| [19] |
Toledo-Ortiz G, Huq E, Rodríguez-Concepción M. 2010. Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. |
| [20] |
Cazzonelli CI, Cuttriss AJ, Cossetto SB, Pye W, Crisp P, et al. 2009. Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8. |
| [21] |
Stanley L, Yuan YW. 2019. Transcriptional regulation of carotenoid biosynthesis in plants: so many regulators, so little consensus. |
| [22] |
Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, et al. 2011. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. |
| [23] |
Dang Q, Sha H, Nie J, Wang Y, Yuan Y, et al. 2021. An apple (Malus domestica) AP2/ERF transcription factor modulates carotenoid accumulation. |
| [24] |
Lu S, Zhang Y, Zhu K, Yang W, Ye J, et al. 2018. The citrus transcription factor CsMADS6 modulates carotenoid metabolism by directly regulating carotenogenic genes. |
| [25] |
Chen J, Hao Z, Guang X, Zhao C, Wang P, et al. 2019. Liriodendron genome sheds light on angiosperm phylogeny and species–pair differentiation. |
| [26] |
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. |
| [27] |
Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. |
| [28] |
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. |
| [29] |
Yu G, Wang LG, Han Y, He QY. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. |
| [30] |
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. |
| [31] |
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. |
| [32] |
Cuong DM, Kim JK, Jeon J, Kim TJ, Park JS, et al. 2018. Expression of carotenoid biosynthetic genes and carotenoid biosynthesis during seedling development of Momordica charantia. |
| [33] |
Sakuraba Y, Kim YS, Yoo SC, Hörtensteiner S, Paek NC. 2013. 7-Hydroxymethyl chlorophyll a reductase functions in metabolic channeling of chlorophyll breakdown intermediates during leaf senescence. |
| [34] |
Sakuraba Y, Schelbert S, Park SY, Han SH, Lee BD, et al. 2012. STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis. |
| [35] |
Luo Z, Zhang J, Li J, Yang C, Wang T, et al. 2013. A STAY-GREEN protein SlSGR1 regulates lycopene and β-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato. |
| [36] |
Ren G, Zhou Q, Wu S, Zhang Y, Zhang L, et al. 2010. Reverse genetic identification of CRN1 and its distinctive role in chlorophyll degradation in Arabidopsis. |
| [37] |
Schelbert S, Aubry S, Burla B, Agne B, Kessler F, et al. 2009. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. |
| [38] |
Egea I, Barsan C, Bian W, Purgatto E, Latché A, et al. 2010. Chromoplast differentiation: current status and perspectives. |
| [39] |
Karniel U, Koch A, Zamir D, Hirschberg J. 2020. Development of zeaxanthin-rich tomato fruit through genetic manipulations of carotenoid biosynthesis. |
| [40] |
Lu S, Van Eck J, Zhou X, Lopez AB, O'Halloran DM, et al. 2006. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. |
| [41] |
Kilcrease J, Collins AM, Richins RD, Timlin JA, O'Connell MA. 2013. Multiple microscopic approaches demonstrate linkage between chromoplast architecture and carotenoid composition in diverse Capsicum annuum fruit. |
| [42] |
Vasquez-Caicedo AL, Heller A, Neidhart S, Carle R. 2006. Chromoplast morphology and beta-carotene accumulation during postharvest ripening of mango cv. 'Tommy Atkins'. |
| [43] |
Wang YH, Zhang YQ, Zhang RR, Zhuang FY, Liu H, et al. 2023. Lycopene ε-cyclase mediated transition of α-carotene and β-carotene metabolic flow in carrot fleshy root. |
| [44] |
Ma Y, Liu N, Greisen P, Li J, Qiao K, et al. 2022. Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica. |
| [45] |
Soltis PS, Folk RA, Soltis DE. 2019. Darwin review: angiosperm phylogeny and evolutionary radiations. |
| [46] |
Jabbour F, Renner SS. 2012. Spurs in a spur: perianth evolution in the delphinieae (Ranunculaceae). |
| [47] |
Yang A, Zhong Y, Liu S, Liu L, Liu T, et al. 2019. New insight into the phylogeographic pattern of Liriodendron chinense (Magnoliaceae) revealed by chloroplast DNA: east-west lineage split and genetic mixture within western subtropical China. |
| [48] |
Zhou Y, Li M, Zhao F, Zha H, Yang L, et al. 2016. Floral nectary morphology and proteomic analysis of nectar of Liriodendron tulipifera Linn. |