[1]

He L, He T, Farrar S, Ji L, Liu T, et al. 2017. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cellular Physiology and Biochemistry 44:532−53

doi: 10.1159/000485089
[2]

Li Z, Xu X, Leng X, He M, Wang J, et al. 2017. Roles of reactive oxygen species in cell signaling pathways and immune responses to viral infections. Archives of Virology 162:603−10

doi: 10.1007/s00705-016-3130-2
[3]

Aruoma OI. 1998. Free radicals, oxidative stress, and antioxidants in human health and disease. Journal of the American Oil Chemists' Society 75:199−212

doi: 10.1007/s11746-998-0032-9
[4]

Işlekel H, Işlekel S, Güner G, Kirkali G, Saydam N, et al. 1997. Superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) and catalase (CAT) activities in experimental brain ischemia-reperfusion. Clinical Neurology and Neurosurgery 99:S140

doi: 10.1016/S0303-8467(97)81907-5
[5]

Celi P, Gabai G. 2015. Oxidant/antioxidant balance in animal nutrition and health: the role of protein oxidation. Frontiers in Veterinary Science 2:48

doi: 10.3389/fvets.2015.00048
[6]

Wang Y, Chen Y, Zhang X, Lu Y, Chen H. 2020. New insights in intestinal oxidative stress damage and the health intervention effects of nutrients: a review. Journal of Functional Foods 75:104248

doi: 10.1016/j.jff.2020.104248
[7]

Hutchinson UF, Jolly NP, Chidi BS, Ngongang MM, Ntwampe SKO. 2019. Vinegar engineering: a bioprocess perspective. Food Engineering Reviews 11:290−305

doi: 10.1007/s12393-019-09196-x
[8]

Wang K, Yu Y, Liu S, Zhu Y, Liu P, et al. 2022. A review of the current state and future prospects in resource recovery of Chinese cereal vinegar residue. Foods 11:3256

doi: 10.3390/foods11203256
[9]

Song ZT, Dong XF, Tong JM, Wang ZH. 2012. Effects of waste vinegar residue on nutrient digestibility and nitrogen balance in laying hens. Livestock Science 150:67−73

doi: 10.1016/j.livsci.2012.08.004
[10]

Moharrery A. 2005. Effect of malic acid on growth performance, carcass characteristics, and feed efficiency in the broiler chickens. International Journal of Poultry Science 4:781−86

doi: 10.3923/ijps.2005.781.786
[11]

Murga-Garrido SM, Hong Q, Cross TL, Hutchison ER, Han J, et al. 2021. Gut microbiome variation modulates the effects of dietary fiber on host metabolism. Microbiome 9:117

doi: 10.1186/s40168-021-01061-6
[12]

Oh S, Mitani T, Kawai M, Ueda K. 2024. Effect of grain vinegar feeding on milk production and fatty acid profile of Holstein cows. Journal of Animal Science and Technology 66:1162

doi: 10.5187/jast.2023.e102
[13]

Song Z, Dong X, Tong J, Wang Z. 2013. In sacco evaluation of ruminal degradability of waste vinegar residue as a feedstuff for ruminants. Animal Production Science 53:292−98

doi: 10.1071/AN12116
[14]

Li P, Li DF, Zhang HY, Li ZC, Zhao PF, et al. 2015. Determination and prediction of energy values in corn distillers dried grains with solubles sources with varying oil content for growing pigs. Journal of Animal Science 93:3458−70

doi: 10.2527/jas.2014-8782
[15]

Wang R, Yu H, Fang H, Jin Y, Zhao Y, et al. 2020. Effects of dietary grape pomace on the intestinal microbiota and growth performance of weaned piglets. Archives of Animal Nutrition 74:296−308

doi: 10.1080/1745039X.2020.1743607
[16]

Ellis RJ. 1977. Protein synthesis by isolated chloroplasts. Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics 463:185−215

doi: 10.1016/0304-4173(77)90008-8
[17]

Hu P, Zhao F, Wang J, Zhu W. 2020. Early-life lactoferrin intervention modulates the colonic microbiota, colonic microbial metabolites and intestinal function in suckling piglets. Applied Microbiology and Biotechnology 104:6185−97

doi: 10.1007/s00253-020-10675-z
[18]

Adeola O. 2000. Digestion and balance techniques in pigs. In Swine nutrition. Boca Raton: CRC press. pp. 923−36. 10.1201/9781420041842-50

[19]

Herrero M, Thornton PK. 2013. Livestock and global change: Emerging issues for sustainable food systems. Proceedings of the National Academy of Sciences 110:20878−81

doi: 10.1073/pnas.1321844111
[20]

Devendra C, Leng RA. 2011. Feed resources for animals in Asia: issues, strategies for use, intensification and integration for increased productivity. Asian-Australasian Journal of Animal Sciences 24:303−21

doi: 10.5713/ajas.2011.r.05
[21]

Negesse T, Makkar HPS, Becker K. 2009. Nutritive value of some non-conventional feed resources of Ethiopia determined by chemical analyses and an in vitro gas method. Animal Feed Science and Technology 154:204−17

doi: 10.1016/j.anifeedsci.2009.09.010
[22]

Xu X, Li LM, Li B, Guo WJ, Ding XL, et al. 2017. Effect of fermented biogas residue on growth performance, serum biochemical parameters, and meat quality in pigs. Asian-Australasian Journal of Animal Sciences 30:1464

doi: 10.5713/ajas.16.0777
[23]

Xiong Y, Liu S, Xiao H, Wu Q, Chi L, et al. 2022. Dietary stevia residue extract supplementation improves the performance and antioxidative capacity of growing–finishing pigs. Journal of the Science of Food and Agriculture 102:4724−35

doi: 10.1002/jsfa.11833
[24]

Lee IK, Kye YC, Kim G, Kim HW, Gu MJ, et al. 2016. Stress, nutrition, and intestinal immune responses in pigs—a review. Asian-Australasian Journal of Animal Sciences 29:1075

doi: 10.5713/ajas.16.0118
[25]

Demirci-Çekiç S, Özkan G, Avan AN, Uzunboy S, Çapanoğlu E, et al. 2022. Biomarkers of oxidative stress and antioxidant defense. Journal of Pharmaceutical and Biomedical Analysis 209:114477

doi: 10.1016/j.jpba.2021.114477
[26]

Ngo V, Duennwald ML. 2022. Nrf2 and oxidative stress: a general overview of mechanisms and implications in human disease. Antioxidants 11:2345

doi: 10.3390/antiox11122345
[27]

Yuan L, Wang Y, Li N, Yang X, Sun X, et al. 2024. Mechanism of action and therapeutic implications of Nrf2/HO-1 in inflammatory bowel disease. Antioxidants 13:1012

doi: 10.3390/antiox13081012
[28]

Ma T, Du J, Zhang Y, Wang Y, Wang B, et al. 2022. GPX4-independent ferroptosis—a new strategy in disease's therapy. Cell Death Discovery 8:434

doi: 10.1038/s41420-022-01212-0
[29]

Hu P, Liu Y, Li S, Zhao Y, Gu H, et al. 2023. Lactoferrin relieves Deoxynivalenol-induced oxidative stress and inflammatory response by modulating the Nrf2/MAPK pathways in the liver. Journal of Agricultural and Food Chemistry 71:8182−91

doi: 10.1021/acs.jafc.3c01035
[30]

Xie X, Zheng Y, Liu X, Cheng C, Zhang X, et al. 2017. Antioxidant activity of Chinese Shanxi aged vinegar and its correlation with polyphenols and flavonoids during the brewing process. Journal of Food Science 82:2479−86

doi: 10.1111/1750-3841.13914
[31]

Xia T, Zhang B, Duan W, Zhang J, Wang M. 2020. Nutrients and bioactive components from vinegar: A fermented and functional food. Journal of Functional Foods 64:103681

doi: 10.1016/j.jff.2019.103681
[32]

Sharma P, Jha AB, Dubey RS, Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012:217037

doi: 10.1155/2012/217037
[33]

Borghetti P, Saleri R, Mocchegiani E, Corradi A, Martelli P. 2009. Infection, immunity and the neuroendocrine response. Veterinary Immunology and Immunopathology 130:141−62

doi: 10.1016/j.vetimm.2009.01.013
[34]

Mazur-Bialy AI, Pocheć E, Zarawski M. 2017. Anti-inflammatory properties of irisin, mediator of physical activity, are connected with TLR4/MyD88 signaling pathway activation. International Journal of Molecular Sciences 18:701

doi: 10.3390/ijms18040701
[35]

Bellezza I, Mierla AL, Minelli A. 2010. Nrf2 and NF-κB and their concerted modulation in cancer pathogenesis and progression. Cancers 2:483−97

doi: 10.3390/cancers2020483
[36]

Minelli A, Grottelli S, Mierla A, Pinnen F, Cacciatore I, et al. 2012. Cyclo (His-Pro) exerts anti-inflammatory effects by modulating NF-κB and Nrf2 signalling. The International Journal of Biochemistry & Cell Biology 44:525−35

doi: 10.1016/j.biocel.2011.12.006
[37]

Bauer E, Williams BA, Smidt H, Verstegen MWA, Mosenthin R. 2006. Influence of the gastrointestinal microbiota on development of the immune system in young animals. Current Issues in Intestinal Microbiology 7:35−52

[38]

Chen L, Xu Y, Chen X, Fang C, Zhao L, et al. 2017. The maturing development of gut microbiota in commercial piglets during the weaning transition. Frontiers in Microbiology 8:1688

doi: 10.3389/fmicb.2017.01688
[39]

Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, et al. 2013. Richness of human gut microbiome correlates with metabolic markers. Nature 500:541−46

doi: 10.1038/nature12506
[40]

Gupta RS, Gao B. 2009. Phylogenomic analyses of clostridia and identification of novel protein signatures that are specific to the genus Clostridium sensu stricto (cluster I). International Journal of Systematic and Evolutionary Microbiology 59:285−94

doi: 10.1099/ijs.0.001792-0
[41]

Guo W, Tang X, Zhang Q, Zhao J, Mao B, et al. 2023. Mitigation of dextran-sodium-sulfate-induced colitis in mice through oral administration of microbiome-derived inosine and its underlying mechanisms. International Journal of Molecular Sciences 24:13852

doi: 10.3390/ijms241813852
[42]

Hamer HM, Jonkers DMAE, Bast A, Vanhoutvin SALW, Fischer MAJG, et al. 2009. Butyrate modulates oxidative stress in the colonic mucosa of healthy humans. Clinical Nutrition 28:88−93

doi: 10.1016/j.clnu.2008.11.002
[43]

Den Besten G, Van Eunen K, Groen AK, Venema K, Reijngoud DJ, et al. 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research 54:2325−40

doi: 10.1194/jlr.R036012