[1]

Rolland F, Baena-Gonzalez E, Sheen J. 2006. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annual Review of Plant Biology 57:675−709

doi: 10.1146/annurev.arplant.57.032905.105441
[2]

Smeekens S, Hellmann HA. 2014. Sugar sensing and signaling in plants. Frontiers in Plant Science 5:113

doi: 10.3389/fpls.2014.00113
[3]

Ramon M, Rolland F, Sheen J. 2008. Sugar sensing and signaling. The Arabidopsis Book 2008:e0117

doi: 10.1199/tab.0117
[4]

Walmsley AR, Barrett MP, Bringaud F, Gould GW. 1998. Sugar transporters from bacteria, parasites and mammals: structure–activity relationships. Trends in Biochemical Sciences 23:476−81

doi: 10.1016/S0968-0004(98)01326-7
[5]

Lemoine R, La Camera S, Atanassova R, Dédaldéchamp F, Allario T, et al. 2013. Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science 4:272

doi: 10.3389/fpls.2013.00272
[6]

Rennie EA, Turgeon R. 2009. A comprehensive picture of phloem loading strategies. Proceedings of the National Academy of Sciences of the United States of America 106:14162−67

doi: 10.1073/pnas.0902279106
[7]

Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, et al. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527−32

doi: 10.1038/nature09606
[8]

Doidy J, Grace E, Kühn C, Simon-Plas F, Casieri L, et al. 2012. Sugar transporters in plants and in their interactions with fungi. Trends in Plant Science 17:413−22

doi: 10.1016/j.tplants.2012.03.009
[9]

Ludewig F, Flügge UI. 2013. Role of metabolite transporters in source-sink carbon allocation. Frontiers in Plant Science 4:231

doi: 10.3389/fpls.2013.00231
[10]

Sherson SM, Alford HL, Forbes SM, Wallace G, Smith SM. 2003. Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. Journal of Experimental Botany 54:525−31

doi: 10.1093/jxb/erg055
[11]

Yan N. 2013. Structural advances for the major facilitator superfamily (MFS) transporters. Trends in Biochemical Sciences 38:151−59

doi: 10.1016/j.tibs.2013.01.003
[12]

Büttner M. 2010. The Arabidopsis sugar transporter (AtSTP) family: an update. Plant Biology 12:35−41

doi: 10.1111/j.1438-8677.2010.00383.x
[13]

Sauer N, Tanner W. 1989. The hexose carrier from Chlorella cDNA cloning of a eucaryotic H+-cotransporter. FEBS Letters 259:43−46

doi: 10.1016/0014-5793(89)81489-9
[14]

Afoufa-Bastien D, Medici A, Jeauffre J, Coutos-Thévenot P, Lemoine R, et al. 2010. The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling. BMC Plant Biology 10:245

doi: 10.1186/1471-2229-10-245
[15]

Reuscher S, Akiyama M, Yasuda T, Makino H, Aoki K, et al. 2014. The sugar transporter inventory of tomato: genome-wide identification and expression analysis. Plant and Cell Physiology 55:1123−41

doi: 10.1093/pcp/pcu052
[16]

Jiu S, Haider MS, Kurjogi MM, Zhang K, Zhu X, et al. 2018. Genome-wide characterization and expression analysis of sugar transporter family genes in woodland strawberry. The Plant Genome 11:170103

doi: 10.3835/plantgenome2017.11.0103
[17]

Li JM, Zheng DM, Li LT, Qiao X, Wei SW, et al. 2015. Genome-wide function, evolutionary characterization and expression analysis of sugar transporter family genes in pear (Pyrus bretschneideri Rehd). Plant and Cell Physiology 56:1721−37

doi: 10.1093/pcp/pcv090
[18]

Liu Q, Dang H, Chen Z, Wu J, Chen Y, et al. 2018. Genome-wide identification, expression, and functional analysis of the sugar transporter gene family in cassava (Manihot esculenta). International Journal of Molecular Sciences 19:987

doi: 10.3390/ijms19040987
[19]

Martin CL, Bergman MR, Deravi LF, Paten JA. 2020. A role for monosaccharides in nucleation inhibition and transport of collagen. Bioelectricity 2:186−97

doi: 10.1089/bioe.2020.0013
[20]

Otori K, Tanabe N, Tamoi M, Shigeoka S. 2019. Sugar Transporter Protein 1 (STP1) contributes to regulation of the genes involved in shoot branching via carbon partitioning in Arabidopsis. Bioscience, Biotechnology, and Biochemistry 83:472−81

doi: 10.1080/09168451.2018.1550355
[21]

Toyofuku K, Kasahara M, Yamaguchi J. 2000. Characterization and expression of monosaccharide transporters (osMSTs) in rice. Plant and Cell Physiology 41:940−47

doi: 10.1093/pcp/pcd016
[22]

Truernit E, Schmid J, Epple P, Illig J, Sauer N. 1996. The sink-specific and stress-regulated Arabidopsis STP4 gene: enhanced expression of a gene encoding a monosaccharide transporter by wounding, elicitors, and pathogen challenge. The Plant Cell 8:2169−82

doi: 10.1105/tpc.8.12.2169
[23]

Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, et al. 2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proceedings of the National Academy of Sciences of the United States of America 97:11655−60

doi: 10.1073/pnas.97.21.11655
[24]

Wei H, Liu J, Zheng J, Zhou R, Cheng Y, et al. 2020. Sugar transporter proteins in Capsicum: identification, characterization, evolution and expression patterns. Biotechnology & Biotechnological Equipment 34:341−53

doi: 10.1080/13102818.2020.1749529
[25]

Zhang B, Han Y. 2021. Genomics of fruit acidity and sugar content in apple. In The Apple Genome, ed. Korban SS. Cham: Springer. pp. 297−309. doi: 10.1007/978-3-030-74682-7_14

[26]

Zhang Q, Feng C, Li W, Qu Z, Zeng M, et al. 2019. Transcriptional regulatory networks controlling taste and aroma quality of apricot (Prunus armeniaca L.) fruit during ripening. BMC Genomics 20:45

doi: 10.1186/s12864-019-5424-8
[27]

Cao X, Guo Z, Wang P, Lu S, Li W, et al. 2000. MdbZIP44–MdCPRF2-like-Mdα-GP2 regulate starch and sugar metabolism in apple under nitrogen supply. Horticulture Research 11(5):uhae072

doi: 10.1093/hr/uhae072
[28]

Jiang X, Cui M, Zhang W, Xie L, Xu L. 2021. Design of chiral mesoporous silica nanorods using ursodeoxycholic acid/chenodeoxycholic acid and CTAB as templates for chiral-selective release of achiral drugs. Materials Letters 285:129144

doi: 10.1016/j.matlet.2020.129144
[29]

Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, et al. 2005. Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook, ed. Walker JM. Totowa, NJ: Humana Press. pp. 571−607. doi: 10.1385/1-59259-890-0:571

[30]

Zhang Z, Zhang J, Chen Y, Li R, Wang H, et al. 2012. Genome-wide analysis and identification of HAK potassium transporter gene family in maize (Zea mays L.). Molecular Biology Reports 39:8465−73

doi: 10.1007/s11033-012-1700-2
[31]

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37:W202−W208

doi: 10.1093/nar/gkp335
[32]

Su D, Xiang W, Wen L, Lu W, Shi Y, et al. 2021. Genome-wide identification, characterization and expression analysis of BES1 gene family in tomato. BMC Plant Biology 21:161

doi: 10.1186/s12870-021-02933-7
[33]

Pradhan S, Shyamli PS, Suranjika S, Parida A. 2021. Genome wide identification and analysis of the R2R3-MYB transcription factor gene family in the mangrove Avicennia marina. Agronomy 11(1):123

doi: 10.3390/agronomy11010123
[34]

Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, et al. 2013. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Research 41:D991−D995

doi: 10.1093/nar/gks1193
[35]

Rossatto T, Auler PA, Amaral MN, Milech C, Magalhães Júnior AM, et al. 2021. Selection of reference genes for RT-qPCR studies in different organs of rice cultivar BRS AG submitted to recurrent saline stress. Russian Journal of Plant Physiology 68:254−65

doi: 10.1134/S1021443721020163
[36]

Rottmann T, Fritz C, Sauer N, Stadler R. 2018. Glucose uptake via STP transporters inhibits in vitro pollen tube growth in a HEXOKINASE1-dependent manner in Arabidopsis thaliana. The Plant Cell 30:2057−81

doi: 10.1105/tpc.18.00356
[37]

Mitre LK, Teixeira-Silva NS, Rybak K, Magalhães DM, de Souza-Neto RR, et al. 2021. The Arabidopsis immune receptor EFR increases resistance to the bacterial pathogens Xanthomonas and Xylella in transgenic sweet orange. Plant Biotechnology Journal 19:1294−96

doi: 10.1111/pbi.13629
[38]

Zhang W, Wang S, Yu F, Tang J, Yu L, et al. 2019. Genome-wide identification and expression profiling of sugar transporter protein (STP) family genes in cabbage (Brassica oleracea var. capitata L.) reveals their involvement in clubroot disease responses. Genes 10:71

doi: 10.3390/genes10010071
[39]

Zheng QM, Tang Z, Xu Q, Deng XX. 2014. Isolation, phylogenetic relationship and expression profiling of sugar transporter genes in sweet orange (Citrus sinensis). Plant Cell, Tissue and Organ Culture (PCTOC) 119:609−24

doi: 10.1007/s11240-014-0560-y
[40]

Vishwakarma P, Banerjee A, Pasrija R, Prasad R, Lynn AM. 2018. Phylogenetic and conservation analyses of MFS transporters. 3 Biotech 8:462

doi: 10.1007/s13205-018-1476-8
[41]

Yamada K, Osakabe Y, Yamaguchi-Shinozaki K. 2017. A C-terminal motif contributes to the plasma membrane localization of Arabidopsis STP transporters. PLoS One 12:e0186326

doi: 10.1371/journal.pone.0186326
[42]

Kong W, An B, Zhang Y, Yang J, Li S, et al. 2019. Sugar transporter proteins (STPs) in Gramineae crops: comparative analysis, phylogeny, evolution, and expression profiling. Cells 8:560

doi: 10.3390/cells8060560
[43]

Cordoba E, Aceves-Zamudio DL, Hernández-Bernal AF, Ramos-Vega M, León P. 2015. Sugar regulation of SUGAR TRANSPORTER PROTEIN 1 (STP1) expression in Arabidopsis thaliana. Journal of Experimental Botany 66:147−59

doi: 10.1093/jxb/eru394
[44]

Fotopoulos V, Gilbert MJ, Pittman JK, Marvier AC, Buchanan AJ, et al. 2003. The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atβfruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiology 132:821−29

doi: 10.1104/pp.103.021428
[45]

Ren Y, Liao S, Xu Y. 2023. An update on sugar allocation and accumulation in fruits. Plant Physiology 193:888−99

doi: 10.1093/plphys/kiad294
[46]

Chen LQ, Cheung LS, Feng L, Tanner W, Frommer WB. 2015. Transport of sugars. Annual Review of Biochemistry 84:865−94

doi: 10.1146/annurev-biochem-060614-033904
[47]

Saddhe AA, Manuka R, Penna S. 2021. Plant sugars: homeostasis and transport under abiotic stress in plants. Physiologia Plantarum 171:739−55

doi: 10.1111/ppl.13283
[48]

Feng K, Hou XL, Xing GM, Liu JX, Duan AQ, et al. 2020. Advances in AP2/ERF super-family transcription factors in plant. Critical Reviews in Biotechnology 40:750−76

doi: 10.1080/07388551.2020.1768509
[49]

Li S, Chen K, Grierson D. 2021. Molecular and hormonal mechanisms regulating fleshy fruit ripening. Cells 10:1136

doi: 10.3390/cells10051136
[50]

Chen L, Xu S, Liu Y, Zu Y, Zhang F, et al. 2022. Identification of key gene networks controlling polysaccharide accumulation in different tissues of Polygonatum cyrtonema Hua by integrating metabolic phenotypes and gene expression profiles. Frontiers in Plant Science 13:1012231

doi: 10.3389/fpls.2022.1012231
[51]

Manck-Götzenberger J, Requena N. 2016. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Frontiers in Plant Science 7:487

doi: 10.3389/fpls.2016.00487