[1]

Op de Beeck HP, Torfs K, Wagemans J. 2008. Perceived shape similarity among unfamiliar objects and the organization of the human object vision pathway. The Journal of Neuroscience 28:10111−23

doi: 10.1523/JNEUROSCI.2511-08.2008
[2]

Cisek P, Kalaska JF. 2010. Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience 33:269−98

doi: 10.1146/annurev.neuro.051508.135409
[3]

Gibson JJ. 1979. The ecological approach to visual perception. Houghton, Mifflin and Company

[4]

Tucker M, Ellis R. 1998. On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance 24:830−46

doi: 10.1037/0096-1523.24.3.830
[5]

Chao LL, Martin A. 2000. Representation of manipulable man-made objects in the dorsal stream. NeuroImage 12:478−84

doi: 10.1006/nimg.2000.0635
[6]

Grafton ST, Fadiga L, Arbib MA, Rizzolatti G. 1997. Premotor cortex activation during observation and naming of familiar tools. NeuroImage 6:231−36

doi: 10.1006/nimg.1997.0293
[7]

Pessoa L, Engelmann JB. 2010. Embedding reward signals into perception and cognition. Frontiers in Neuroscience 4:17

doi: 10.3389/fnins.2010.00017
[8]

Hickey C, Peelen MV. 2017. Reward selectively modulates the lingering neural representation of recently attended objects in natural scenes. The Journal of Neuroscience 37:7297−304

doi: 10.1523/JNEUROSCI.0684-17.2017
[9]

Serences JT. 2008. Value-based modulations in human visual cortex. Neuron 60:1169−81

doi: 10.1016/j.neuron.2008.10.051
[10]

Wang L, Yu H, Hu J, Theeuwes J, Gong X, et al. 2015. Reward breaks through center-surround inhibition via anterior insula. Human Brain Mapping 36:5233−51

doi: 10.1002/hbm.23004
[11]

Bundt C, Abrahamse EL, Braem S, Brass M, Notebaert W. 2016. Reward anticipation modulates primary motor cortex excitability during task preparation. NeuroImage 142:483−88

doi: 10.1016/j.neuroimage.2016.07.013
[12]

Wang L, Chang W, Krebs RM, Boehler CN, Theeuwes J, et al. 2019. Neural dynamics of reward-induced response activation and inhibition. Cerebral Cortex 29:3961−76

doi: 10.1093/cercor/bhy275
[13]

Wang L, Luo X, Yuan TF, Zhou X. 2021. Reward facilitates response conflict resolution via global motor inhibition: electromyography evidence. Psychophysiology 58:e13896

doi: 10.1111/psyp.13896
[14]

van Ede F, Chekroud SR, Stokes MG, Nobre AC. 2019. Concurrent visual and motor selection during visual working memory guided action. Nature Neuroscience 22:477−83

doi: 10.1038/s41593-018-0335-6
[15]

Gong M, Jia K, Li S. 2017. Perceptual competition promotes suppression of reward salience in behavioral selection and neural representation. The Journal of Neuroscience 37:6242−52

doi: 10.1523/JNEUROSCI.0217-17.2017
[16]

Cisek P. 2006. Integrated neural processes for defining potential actions and deciding between them: a computational model. The Journal of Neuroscience 26:9761−70

doi: 10.1523/JNEUROSCI.5605-05.2006
[17]

Gallivan JP, Barton KS, Chapman CS, Wolpert DM, Randall Flanagan J. 2015. Action plan co-optimization reveals the parallel encoding of competing reach movements. Nature Communications 6:7428

doi: 10.1038/ncomms8428
[18]

Vogel EK, Luck SJ. 2000. The visual N1 component as an index of a discrimination process. Psychophysiology 37:190−203

doi: 10.1111/1469-8986.3720190
[19]

Eimer M. 1996. The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology 99:225−34

doi: 10.1016/0013-4694(96)95711-9
[20]

Kiss M, Driver J, Eimer M. 2009. Reward priority of visual target singletons modulates event-related potential signatures of attentional selection. Psychological Science 20:245−51

doi: 10.1111/j.1467-9280.2009.02281.x
[21]

Faul F, Erdfelder E, Buchner A, Lang AG. 2009. Statistical power analyses using G* Power 3.1: tests for correlation and regression analyses. Behavior Research Methods 41:1149−60

doi: 10.3758/BRM.41.4.1149
[22]

Delorme A, Makeig S. 2004. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods 134:9−21

doi: 10.1016/j.jneumeth.2003.10.009
[23]

Gladwin TE, 't Hart BM, de Jong R. 2008. Dissociations between motor-related EEG measures in a cued movement sequence task. Cortex 44:521−36

doi: 10.1016/j.cortex.2007.10.005
[24]

Hatfield BD, Haufler AJ, Hung TM, Spalding TW. 2004. Electroencephalographic studies of skilled psychomotor performance. Journal of Clinical Neurophysiology 21:144−56

doi: 10.1097/00004691-200405000-00003
[25]

McCollough AW, Machizawa MG, Vogel EK. 2007. Electrophysiological measures of maintaining representations in visual working memory. Cortex 43:77−94

doi: 10.1016/S0010-9452(08)70447-7
[26]

Scrivener CL, Reader AT. 2022. Variability of EEG electrode positions and their underlying brain regions: visualizing gel artifacts from a simultaneous EEG-fMRI dataset. Brain and Behavior 12:e2476

doi: 10.1002/brb3.2476
[27]

Maris E, Oostenveld R. 2007. Nonparametric statistical testing of EEG-and MEG-data. Journal of Neuroscience Methods 164:177−90

doi: 10.1016/j.jneumeth.2007.03.024
[28]

Miller J, Patterson T, Ulrich R. 1998. Jackknife-based method for measuring LRP onset latency differences. Psychophysiology 35:99−115

doi: 10.1111/1469-8986.3510099
[29]

Wagenmakers EJ, Love J, Marsman M, Jamil T, Ly A, et al. 2018. Bayesian inference for psychology. Part II: Example applications with JASP. Psychonomic Bulletin & Review 25:58−76

doi: 10.3758/s13423-017-1323-7
[30]

Berggren N, Eimer M. 2018. Object-based target templates guide attention during visual search. Journal of Experimental Psychology: Human Perception and Performance 44:1368

doi: 10.1037/xhp0000541
[31]

Dell'Acqua R, Sessa P, Toffanin P, Luria R, Jolicœur P. 2010. Orienting attention to objects in visual short-term memory. Neuropsychologia 48:419−28

doi: 10.1016/j.neuropsychologia.2009.09.033
[32]

Martínez A, Teder-Sälejärvi W, Vazquez M, Molholm S, Foxe JJ, et al. 2006. Objects are highlighted by spatial attention. Journal of Cognitive Neuroscience 18:298−310

doi: 10.1162/jocn.2006.18.2.298
[33]

Luck SJ, Hillyard SA. 1994. Electrophysiological correlates of feature analysis during visual search. Psychophysiology 31:291−308

doi: 10.1111/j.1469-8986.1994.tb02218.x
[34]

Minelli A, Marzi CA, Girelli M. 2007. Lateralized readiness potential elicited by undetected visual stimuli. Experimental Brain Research 179:683−90

doi: 10.1007/s00221-006-0825-8
[35]

Töllner T, Rangelov D, Müller HJ. 2012. How the speed of motor-response decisions, but not focal-attentional selection, differs as a function of task set and target prevalence. Proceedings of the National Academy of Sciences of the United States of America 109:E1990−E1999

doi: 10.1073/pnas.1206382109
[36]

Haith AM, Pakpoor J, Krakauer JW. 2016. Independence of movement preparation and movement initiation. The Journal of Neuroscience 36:3007−15

doi: 10.1523/JNEUROSCI.3245-15.2016
[37]

Duque J, Labruna L, Cazares C, Ivry RB. 2014. Dissociating the influence of response selection and task anticipation on corticospinal suppression during response preparation. Neuropsychologia 65:287−96

doi: 10.1016/j.neuropsychologia.2014.08.006
[38]

Duque J, Lew D, Mazzocchio R, Olivier E, Ivry RB. 2010. Evidence for two concurrent inhibitory mechanisms during response preparation. The Journal of Neuroscience 30:3793−802

doi: 10.1523/JNEUROSCI.5722-09.2010
[39]

Galaro JK, Celnik P, Chib VS. 2019. Motor cortex excitability reflects the subjective value of reward and mediates its effects on incentive-motivated performance. The Journal of Neuroscience 39:1236−48

doi: 10.1523/JNEUROSCI.1254-18.2018
[40]

Kang G, Chang W, Wang L, Zhou X. 2019. Reward expectation modulates multiple stages of auditory conflict control. International Journal of Psychophysiology 146:148−56

doi: 10.1016/j.ijpsycho.2019.09.009
[41]

Cisek P. 2007. Cortical mechanisms of action selection: the affordance competition hypothesis. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 362:1585−99

doi: 10.1098/rstb.2007.2054
[42]

Thut G, Nietzel A, Brandt SA, Pascual-Leone A. 2006. Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. Journal of Neuroscience 26:9494−502

doi: 10.1523/JNEUROSCI.0875-06.2006
[43]

Brinkman L, Stolk A, Dijkerman HC, de Lange FP, Toni I. 2014. Distinct roles for alpha- and beta-band oscillations during mental simulation of goal-directed actions. The Journal of Neuroscience 34:14783−92

doi: 10.1523/JNEUROSCI.2039-14.2014
[44]

Hoy CW, de Hemptinne C, Wang SS, Harmer CJ, Apps MAJ, et al. 2024. Beta and theta oscillations track effort and previous reward in the human basal ganglia and prefrontal cortex during decision making. Proceedings of the National Academy of Sciences of the United States of America 121:e2322869121

doi: 10.1073/pnas.2322869121