[1]

Delcour JA, Joye IJ, Pareyt B, Wilderjans E, Brijs K, et al. 2012. Wheat gluten functionality as a quality determinant in cereal-based food products. Annual Review of Food Science and Technology 3:469−92

doi: 10.1146/annurev-food-022811-101303
[2]

Ooms N, Delcour JA. 2019. How to impact gluten protein network formation during wheat flour dough making. Current Opinion in Food Science 25:88−97

doi: 10.1016/j.cofs.2019.04.001
[3]

Alfaris NA, Gupta AK, Khan D, Khan M, Wabaidur SM, et al. 2022. Impacts of wheat bran on the structure of the gluten network as studied through the production of dough and factors affecting gluten network. Food Science and Technology 42:e37021

doi: 10.1590/fst.37021
[4]

Buchert J, Ercili Cura D, Ma H, Gasparetti C, Monogioudi E, et al. 2010. Crosslinking food proteins for improved functionality. Annual Review of Food Science and Technology 1:113−38

doi: 10.1146/annurev.food.080708.100841
[5]

Abedi E, Pourmohammadi K. 2020. The effect of redox agents on conformation and structure characterization of gluten protein: an extensive review. Food Science & Nutrition 8:6301−19

doi: 10.1002/fsn3.1937
[6]

Renzetti S, Rosell CM. 2016. Role of enzymes in improving the functionality of proteins in non-wheat dough systems. Journal of Cereal Science 67:35−45

doi: 10.1016/j.jcs.2015.09.008
[7]

Pourmohammadi K, Abedi E. 2021. Enzymatic modifications of gluten protein: oxidative enzymes. Food Chem 356:129679

doi: 10.1016/j.foodchem.2021.129679
[8]

Joye IJ, Lagrain B, Delcour JA. 2009. Endogenous redox agents and enzymes that affect protein network formation during breadmaking – a review. Journal of Cereal Science 50:1−10

doi: 10.1016/j.jcs.2009.04.002
[9]

Wang Y, Han S, Wang Y, Liang Q, Luo W. 2025. Artificial intelligence technology assists enzyme prediction and rational design. Journal of Agricultural and Food Chemistry 73:7065−73

doi: 10.1021/acs.jafc.4c13201
[10]

Wen S, Zheng W, Bornscheuer UT, Wu S. 2025. Generative artificial intelligence for enzyme design: Recent advances in models and applications. Current Opinion in Green and Sustainable Chemistry 52:101010

doi: 10.1016/j.cogsc.2025.101010
[11]

Ge F, Chen G, Qian M, Xu C, Liu J, et al. 2023. Artificial intelligence aided lipase production and engineering for enzymatic performance improvement. Journal of Agricultural and Food Chemistry 71:14911−30

doi: 10.1021/acs.jafc.3c05029
[12]

Faccio G, Nivala O, Kruus K, Buchert J, Saloheimo M. 2011. Sulfhydryl oxidases: sources, properties, production and applications. Applied Microbiology and Biotechnology 91:957−66

doi: 10.1007/s00253-011-3440-y
[13]

Wilkinson B, Gilbert HF. 2004. Protein disulfide isomerase. Biochimica et biophysica acta (BBA) - Proteins and Proteomics 1699:35−44

doi: 10.1016/S1570-9639(04)00063-9
[14]

Crainic AM, Moț AC, Silaghi-Dumitrescu R. 2019. Isolation, Purification and characterization of ascorbate oxidase and peroxidase from cucurbita pepo medullosa. Studia Universitatis Babes-Bolyai Chemia 64

[15]

Krishna Das B, Kumar A, Maindola P, Mahanty S, Jain SK, et al. 2016. Non-native ligands define the active site of Pennisetum glaucum (L.) R. Br dehydroascorbate reductase. Biochemical and Biophysical Research Communications 473:1152−57

doi: 10.1016/j.bbrc.2016.04.031
[16]

Selinheimo E. 2008. Tyrosinase and laccase as novel crosslinking tools for food biopolymer. Dissertation. Aalto University, VTT Technical Research Centre of Finland. https://publications.vtt.fi/pdf/publications/2008/P693.pdf

[17]

Flander L, Holopainen U, Kruus K, Buchert J. 2011. Effects of tyrosinase and laccase on oat proteins and quality parameters of gluten-free oat breads. Journal of Agricultural and Food Chemistry 59:8385−90

doi: 10.1021/jf200872r
[18]

Hayward S, Cilliers T, Swart P. 2017. Lipoxygenases: from isolation to application. Comprehensive Reviews in Food Science and Food Safety 16:199−211

doi: 10.1111/1541-4337.12239
[19]

Bahal G, Sudha ML, Ramasarma PR. 2013. Wheat germ lipoxygenase: its effect on dough rheology, microstructure, and bread making quality. International Journal of Food Properties 16:1730−39

doi: 10.1080/10942912.2011.607932
[20]

Casas-Godoy L, Duquesne S, Bordes F, Sandoval G, Marty A. 2012. Lipases: an overview. Lipases and phospholipases: methods and protocols, ed. Sandoval G. New York: Humana Press. pp. 3-30. 10.1007/978-1-61779-600-5_1

[21]

Gerits LR, Pareyt B, Delcour JA. 2014. A lipase based approach for studying the role of wheat lipids in bread making. Food chemistry 156:190−96

doi: 10.1016/j.foodchem.2014.01.107
[22]

Robertson JA, Faulds CB, Smith AC, Waldron KW. 2008. Peroxidase-mediated oxidative cross-linking and its potential to modify mechanical properties in water-soluble polysaccharide extracts and cereal grain residues. Journal of Agricultural and Food Chemistry 56:1720−26

doi: 10.1021/jf072445d
[23]

Zhang Y, Chen M, Chen Y, Hou Y, Hu SQ. 2019. Characterization and exploration of recombinant wheat catalase for improvement of wheat-flour-processing quality. Journal of Agricultural and Food Chemistry 67:2660−69

doi: 10.1021/acs.jafc.8b06646
[24]

Joye IJ, Shang J, Brijs K, Delcour JA. 2010. Effect of the coenzymes NAD (P)(H) in straight-dough breadmaking on protein properties and loaf volume. Cereal Chemistry 87:420−27

doi: 10.1094/CCHEM-03-10-0047
[25]

Heckler EJ, Rancy PC, Kodali VK, Thorpe C. 2008. Generating disulfides with the Quiescin-sulfhydryl oxidases. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1783:567−77

doi: 10.1016/j.bbamcr.2007.10.002
[26]

Kodali VK, Thorpe C. 2010. Oxidative protein folding and the Quiescin–sulfhydryl oxidase family of flavoproteins. Antioxidants & Redox Signaling 13:1217−30

doi: 10.1089/ars.2010.3098
[27]

Raje S, Thorpe C. 2003. Inter-domain redox communication in flavoenzymes of the quiescin/sulfhydryl oxidase family: role of a thioredoxin domain in disulfide bond formation. Biochemistry 42:4560−68

doi: 10.1021/bi030003z
[28]

Shergalis AG, Hu S, Bankhead A 3rd, Neamati N. 2020. Role of the ERO1-PDI interaction in oxidative protein folding and disease. Pharmacology & therapeutics 210:107525

doi: 10.1016/j.pharmthera.2020.107525
[29]

Zito E. 2015. ERO1: a protein disulfide oxidase and H2O2 producer. Free Radical Biology and Medicine 83:299−304

doi: 10.1016/j.freeradbiomed.2015.01.011
[30]

Wu CK, Dailey TA, Dailey HA, Wang BC, Rose JP. 2003. The crystal structure of augmenter of liver regeneration: a mammalian FAD-dependent sulfhydryl oxidase. Protein Science 12:1109−18

doi: 10.1110/ps.0238103
[31]

Codding JA, Israel BA, Thorpe C. 2012. Protein substrate discrimination in the quiescin sulfhydryl oxidase (QSOX) family. Biochemistry 51:4226−35

doi: 10.1021/bi300394w
[32]

Wang W, Winther JR, Thorpe C. 2007. Erv2p: characterization of the redox behavior of a yeast sulfhydryl oxidase. Biochemistry 46:3246−54

doi: 10.1021/bi602499t
[33]

Gross E, Kastner DB, Kaiser CA, Fass D. 2004. Structure of Ero1p, source of disulfide bonds for oxidative protein folding in the cell. Cell 117:601−10

doi: 10.1016/S0092-8674(04)00418-0
[34]

Gross E, Sevier CS, Heldman N, Vitu E, Bentzur M, et al. 2006. Generating disulfides enzymatically: reaction products and electron acceptors of the endoplasmic reticulum thiol oxidase Ero1p. Proceedings of the National Academy of Sciences of the United States of America 103:299−304

doi: 10.1073/pnas.0506448103
[35]

Margittai É, Enyedi B, Csala M, Geiszt M, Bánhegyi G. 2015. Composition of the redox environment of the endoplasmic reticulum and sources of hydrogen peroxide. Free Radical Biology and Medicine 83:331−40

doi: 10.1016/j.freeradbiomed.2015.01.032
[36]

Siswoyo T, Morita N. 2016. Influences of sulfhydryl oxidase isolated from Aspergillus niger on physicochemical properties of starch and rheological properties of wheat dough. International Food Research Journal 23(5):1960−64

[37]

Faccio G, Kruus K, Buchert J, Saloheimo M. 2011. Production and characterisation of AoSOX2 from Aspergillus oryzae, a novel flavin-dependent sulfhydryl oxidase with good pH and temperature stability. Applied Microbiology and Biotechnology 90:941−49

doi: 10.1007/s00253-011-3129-2
[38]

O'connell T, Maurer KH, Weber T, Prüser I. 2010. US. Patents 20100196287. Compositions comprising perhydrolases and alkylene glycol diacetates.

[39]

Okumura M, Noi K, Inaba K. 2021. Visualization of structural dynamics of protein disulfide isomerase enzymes in catalysis of oxidative folding and reductive unfolding. Current Opinion in Structural Biology 66:49−57

doi: 10.1016/j.sbi.2020.10.004
[40]

Victor P, Sarada D, Ramkumar KM. 2021. Crosstalk between endoplasmic reticulum stress and oxidative stress: Focus on protein disulfide isomerase and endoplasmic reticulum oxidase 1. European Journal of Pharmacology 892:173749

doi: 10.1016/j.ejphar.2020.173749
[41]

Torres M, Medinas DB, Matamala JM, Woehlbier U, Cornejo VH, et al. 2015. The protein-disulfide isomerase ERp57 regulates the steady-state levels of the prion protein. Journal of Biological Chemistry 290:23631−45

doi: 10.1074/jbc.M114.635565
[42]

Yang A, Lin L, Zhang J, Wu Y, Zhao Z. 2025. A novel role for endoplasmic reticulum protein ERp72 in the pathogenesis of autoantibody-induced arthritis. Scandinavian Journal of Rheumatology 54:16−24

doi: 10.1080/03009742.2024.2362040
[43]

Matsusaki M, Kanemura S, Kinoshita M, Lee YH, Inaba K, et al. 2020. The protein disulfide isomerase family: from proteostasis to pathogenesis. Biochimica et Biophysica Acta (BBA) - General Subjects 1864:129338

doi: 10.1016/j.bbagen.2019.04.003
[44]

Kikuchi M, Doi E, Tsujimoto I, Horibe T, Tsujimoto Y. 2002. Functional analysis of human P5, a protein disulfide isomerase homologue. The journal of biochemistry 132:451−55

doi: 10.1093/oxfordjournals.jbchem.a003242
[45]

Robinson PJ, Pringle MA, Fleming B, Bulleid NJ. 2023. Distinct role of ERp57 and ERdj5 as a disulfide isomerase and reductase during ER protein folding. Journal of Cell Science 136:jcs260656

doi: 10.1242/jcs.260656
[46]

Fujimoto T, Nakamura O, Saito M, Tsuru A, Matsumoto M, et al. 2018. Identification of the physiological substrates of PDIp, a pancreas-specific protein-disulfide isomerase family member. Journal of Biological Chemistry 293:18421−33

doi: 10.1074/jbc.RA118.003694
[47]

Tsutsumi C, Uegaki K, Yamashita R, Ushioda R, Nagata K. 2024. Zn2+-dependent functional switching of ERp18, an ER-resident thioredoxin-like protein. Cell Reports 43:113682

doi: 10.1016/j.celrep.2024.113682
[48]

Nørgaard P, Westphal V, Tachibana C, Alsøe L, Holst B, et al. 2001. Functional differences in yeast protein disulfide isomerases. The Journal of cell biology 152:553−62

doi: 10.1083/jcb.152.3.553
[49]

Collet JF, Bardwell JCA. 2002. Oxidative protein folding in bacteria. Molecular Microbiology 44:1−8

doi: 10.1046/j.1365-2958.2002.02851.x
[50]

Kozlov G, Määttänen P, Thomas DY, Gehring K. 2010. A structural overview of the PDI family of proteins. The FEBS Journal 277:3924−36

doi: 10.1111/j.1742-4658.2010.07793.x
[51]

Hatahet F, Ruddock LW. 2009. Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxidants & Redox Signaling 11:2807−50

doi: 10.1089/ars.2009.2466
[52]

Neves RP, Fernandes PA, Ramos MJ. 2017. Mechanistic insights on the reduction of glutathione disulfide by protein disulfide isomerase. Proceedings of the National Academy of Sciences of the United States of America 114:E4724−E4733

doi: 10.1073/pnas.1618985114
[53]

Okumura M, Noi K, Kanemura S, Kinoshita M, Saio T, et al. 2019. Dynamic assembly of protein disulfide isomerase in catalysis of oxidative folding. Nature Chemical Biology 15:499−509

doi: 10.1038/s41589-019-0268-8
[54]

Wang C, Yu J, Huo L, Wang L, Feng W, et al. 2012. Human protein-disulfide isomerase is a redox-regulated chaperone activated by oxidation of domain a′. Journal of Biological Chemistry 287:1139−49

doi: 10.1074/jbc.M111.303149
[55]

Kuramochi T, Yamashita Y, Arai K, Kanemura S, Muraoka T, et al. 2024. Boosting the enzymatic activity of CxxC motif-containing PDI family members. Chemical Communications 60:6134−37

doi: 10.1039/D4CC01712A
[56]

Wang L, Wang X, Wang CC. 2015. Protein disulfide–isomerase, a folding catalyst and a redox-regulated chaperone. Free Radical Biology and Medicine 83:305−13

doi: 10.1016/j.freeradbiomed.2015.02.007
[57]

Beghin AS, Ooms N, Brijs K, Pareyt B, Delcour JA. 2022. Release of 14C-labeled carbon dioxide from ascorbic acid during straight dough wheat bread making. Cereal Chemistry 99:731−36

doi: 10.1002/cche.10548
[58]

Kosinas C, Zerva A, Topakas E, Dimarogona M. 2023. Structure–function studies of a novel laccase-like multicopper oxidase from Thermothelomyces thermophila provide insights into its biological role. Acta crystallographica Section D: Structural Biology 79:641−54

doi: 10.1107/S2059798323004175
[59]

Foyer CH. 1993. Ascorbic acid. In Antioxidants in higher plants, eds. Alscher RG, Hess JL. Boca Raton: CRC press. pp. 31−58. doi: 10.1201/9781315149899-2

[60]

Wilson JX. 2002. The physiological role of dehydroascorbic acid. FEBS Letters 527:5−9

doi: 10.1016/S0014-5793(02)03167-8
[61]

Farver O, Wherland S, Pecht I. 1994. Intramolecular electron transfer in ascorbate oxidase is enhanced in the presence of oxygen. The Journal of Biological Chemistry 269:22933−36

doi: 10.1016/S0021-9258(17)31598-3
[62]

Hasanuzzaman M, Bhuyan MHMB, Anee TI, Parvin K, Nahar K, et al. 2019. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8:384

doi: 10.3390/antiox8090384
[63]

Pandey P, Achary VMM, Kalasamudramu V, Mahanty S, Reddy GM, Reddy MK. 2014. Molecular and biochemical characterization of dehydroascorbate reductase from a stress adapted C4 plant, pearl millet [Pennisetum glaucum (L.) R. Br]. Plant Cell Reports 33:435−45

doi: 10.1007/s00299-013-1544-9
[64]

Foyer CH, Kunert K. 2024. The ascorbate–glutathione cycle coming of age. Journal of Experimental Botany 75:2682−99

doi: 10.1093/jxb/erae023
[65]

Kunert KJ, Foyer CH. 2023. The ascorbate/glutathione cycle. In Advances in Botanical Research. vol. 105. UK: Oxford University Press on behalf of the Society for Experimental Biology. pp. 77−112. doi: 10.1016/bs.abr.2022.11.004

[66]

Shimaoka T, Miyake C, Yokota A. 2003. Mechanism of the reaction catalyzed by dehydroascorbate reductase from spinach chloroplasts. European journal of Biochemistry 270:921−28

doi: 10.1046/j.1432-1033.2003.03452.x
[67]

Maruta T, Tanaka Y, Yamamoto K, Ishida T, Hamada A, et al. 2024. Evolutionary insights into strategy shifts for the safe and effective accumulation of ascorbate in plants. Journal of Experimental Botany 75:2664−81

doi: 10.1093/jxb/erae062
[68]

Dorion S, Ouellet JC, Rivoal J. 2021. Glutathione metabolism in plants under stress: beyond reactive oxygen species detoxification. Metabolites 11:641

doi: 10.3390/metabo11090641
[69]

Ohta Y, Shiraishi N, Nishikawa T, Nishikimi M. 2000. Copper-catalyzed autoxidations of GSH and L-ascorbic acid: mutual inhibition of the respective oxidations by their coexistence. Biochimica et Biophysica Acta (BBA)-General Subjects 1474:378−82

doi: 10.1016/S0304-4165(00)00034-9
[70]

Valero E, González-Sánchez MI, Maciá H, García-Carmona F. 2009. Computer simulation of the dynamic behavior of the glutathione-ascorbate redox cycle in chloroplasts. Plant Physiology 149:1958−69

doi: 10.1104/pp.108.133223
[71]

Polle A. 2001. Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiology 126:445−62

doi: 10.1104/pp.126.1.445
[72]

Wells WW, Xu DP. 1994. Dehydroascorbate reduction. Journal of Bioenergetics and Biomembranes 26:369−77

doi: 10.1007/BF00762777
[73]

Fedotova OA, Polyakova EA, Grabelnych OI. 2023. Ca2+-dependent oxidation of exogenous NADH and NADPH by the mitochondria of spring wheat and its relation with AOX capacity and ROS content at high temperatures. Journal of Plant Physiology 283:153943

doi: 10.1016/j.jplph.2023.153943
[74]

Beghin AS, Ooms N, Hooyberghs K, Coppens E, Pareyt B, et al. 2022. The influence of varying levels of molecular oxygen on the functionality of azodicarbonamide and ascorbic acid during wheat bread making. Food Research International 161:111878

doi: 10.1016/j.foodres.2022.111878
[75]

Singh K, Gupta R, Shokat S, Iqbal N, Kocsy G, et al. 2024. Ascorbate, plant hormones and their interactions during plant responses to biotic stress. Physiologia Plantarum 176:e14388

doi: 10.1111/ppl.14388
[76]

Agunbiade M, Le Roes-Hill M. 2022. Application of bacterial tyrosinases in organic synthesis. World Journal of Microbiology and Biotechnology 38:2

doi: 10.1007/s11274-021-03186-0
[77]

Faccio G, Kruus K, Saloheimo M, Thöny-Meyer L. 2012. Bacterial tyrosinases and their applications. Process Biochemistry 47:1749−60

doi: 10.1016/j.procbio.2012.08.018
[78]

Kong KH, Park SY, Hong MP, Cho SH. 2000. Expression and characterization of human tyrosinase from a bacterial expression system. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 125:563−69

doi: 10.1016/S0305-0491(00)00163-2
[79]

Gasparetti C, Faccio G, Arvas M, Buchert J, Saloheimo M, et al. 2010. Discovery of a new tyrosinase-like enzyme family lacking a C-terminally processed domain: production and characterization of an Aspergillus oryzae catechol oxidase. Applied Microbiology and Biotechnology 86:213−26

doi: 10.1007/s00253-009-2258-3
[80]

Roy S, Das I, Munjal M, Karthik L, Kumar G, et al. 2014. Isolation and characterization of tyrosinase produced by marine actinobacteria and its application in the removal of phenol from aqueous environment. Frontiers in Biology 9:306−16

doi: 10.1007/s11515-014-1324-0
[81]

Manhivi VE, Amonsou EO, Kudanga T. 2020. Transglutaminase and tyrosinase as potential cross-linking tools for the improvement of rheological properties of gluten-free amadumbe dough. International Journal of Food Science & Technology 55:2399−407

doi: 10.1111/ijfs.14489
[82]

Bassanini I, Ferrandi EE, Riva S, Monti D. 2021. Biocatalysis with laccases: An updated overview. Catalysts 11:26

doi: 10.3390/catal11010026
[83]

Selinheimo E, Kruus K, Buchert J, Hopia A, Autio K. 2006. Effects of laccase, xylanase and their combination on the rheological properties of wheat doughs. Journal of Cereal Science 43:152−59

doi: 10.1016/j.jcs.2005.08.007
[84]

Labat E, Morel MH, Rouau X. 2000. Effects of laccase and ferulic acid on wheat flour doughs. Cereal Chemistry 77:823−28

doi: 10.1094/CCHEM.2000.77.6.823
[85]

Passardi F, Theiler G, Zamocky M, Cosio C, Rouhier N, et al. 2007. PeroxiBase: the peroxidase database. Phytochemistry 68:1605−11

doi: 10.1016/j.phytochem.2007.04.005
[86]

Manu BT, Prasada Rao UJSP. 2011. Role of peroxidase and H2O2 in cross-linking of gluten proteins. Journal of Food Biochemistry 35:1695−702

doi: 10.1111/j.1745-4514.2010.00494.x
[87]

Revanappa SB, Salimath PV, Prasada Rao UJS. 2014. Effect of peroxidase on textural quality of dough and arabinoxylan characteristics isolated from whole wheat flour dough. International Journal of Food Properties 17:2131−41

doi: 10.1080/10942912.2013.784331
[88]

Decamps K, Joye IJ, De Vos DE, Courtin CM, Delcour JA. 2016. Molecular oxygen and reactive oxygen species in bread-making processes: Scarce, but nevertheless important. Critical reviews in food science and nutrition 56:722−36

doi: 10.1080/10408398.2013.795929
[89]

Sepasi Tehrani H, Moosavi-Movahedi AA. 2018. Catalase and its mysteries. Progress in Biophysics and Molecular Biology 140:5−12

doi: 10.1016/j.pbiomolbio.2018.03.001
[90]

Joye IJ, Lagrain B, Delcour JA. 2009. Use of chemical redox agents and exogenous enzymes to modify the protein network during breadmaking – a review. Journal of Cereal Science 50:11−21

doi: 10.1016/j.jcs.2009.04.001
[91]

Permyakova MD, Trufanov VA. 2011. Effect of soybean lipoxygenase on baking properties of wheat flour. Applied Biochemistry and Microbiology 47:315−20

doi: 10.1134/S0003683811030100
[92]

Rani K, Prasada rao U, Krishnarau L, Rao P. 2001. Distribution of enzymes in wheat flour mill streams. Journal of Cereal Science 34:233−42

doi: 10.1006/jcrs.2000.0393
[93]

Narisawa T, Sakai K, Nakajima H, Umino M, Yamashita H, et al. 2024. Effects of fatty acid hydroperoxides produced by lipoxygenase in wheat cultivars during dough preparation on volatile compound formation. Food Chemistry 443:138566

doi: 10.1016/j.foodchem.2024.138566
[94]

Singh AK, Mukhopadhyay M. 2012. Overview of fungal lipase: a review. Applied Biochemistry and Biotechnology 166:486−520

doi: 10.1007/s12010-011-9444-3
[95]

Primo-Martín C, Hamer RJ, de Jongh HHJ. 2006. Surface layer properties of dough liquor components: are they key parameters in gas retention in bread dough. Food Biophysics 1:83−93

doi: 10.1007/s11483-006-9008-1
[96]

Pham T, Tello E, Peterson DG. 2025. Impact of lipase and lipoxygenase activity on the aroma profile of whole wheat bread. Food Research International 209:116191

doi: 10.1016/j.foodres.2025.116191
[97]

Li BB, Lv YY, Wei S, Zhang SB, Zhao YY, et al. 2022. Effects of protein oxidation on the rheological behaviour of different wheat flour. International Journal of Food Science & Technology 57:4602−12

doi: 10.1111/ijfs.15798
[98]

Xu F, Wagner P. 2001. Methods for using dehydrogenases in baking. doi: 10.1007/s00253-013-4753-9

[99]

Nivala O, Mattinen ML, Faccio G, Buchert J, Kruus K. 2013. Discovery of novel secreted fungal sulfhydryl oxidases with a plate test screen. Applied microbiology and biotechnology 97:9429−37

doi: 10.1007/s00253-013-4753-9
[100]

Milczek EM. 2018. Commercial applications for enzyme-mediated protein conjugation: new developments in enzymatic processes to deliver functionalized proteins on the commercial scale. Chemical reviews 118:119−41

doi: 10.1021/acs.chemrev.6b00832
[101]

Liu G, Wang ZM, Du N, Zhang Y, Wei Z, et al. 2022. Recombinant rice quiescin sulfhydryl oxidase strengthens the gluten structure through thiol/disulfide exchange and hydrogen peroxide oxidation. Journal of Agricultural and Food Chemistry 70:9106−16

doi: 10.1021/acs.jafc.2c01652
[102]

Faccio G, Flander L, Buchert J, Saloheimo M, Nordlund E. 2012. Sulfhydryl oxidase enhances the effects of ascorbic acid in wheat dough. Journal of Cereal Science 55:37−43

doi: 10.1016/j.jcs.2011.10.002
[103]

Zhao C, Luo Z, Li M, Gao J, Liang Z, et al. 2020. Wheat protein disulfide isomerase improves bread properties via different mechanisms. Food Chemistry 315:126242

doi: 10.1016/j.foodchem.2020.126242
[104]

Liu G, Wang J, Hou Y, Huang YB, Li CZ, et al. 2017. Improvements of modified wheat protein disulfide isomerases with chaperone activity only on the processing quality of flour. Food and Bioprocess Technology 10:568−81

doi: 10.1007/s11947-016-1840-9
[105]

Every D, Griffin WB, Wilson PE. 2003. Ascorbate oxidase, protein disulfide isomerase, ascorbic acid, dehydroascorbic acid and protein levels in developing wheat kernels and their relationship to protein disulfide bond formation. Cereal Chemistry 80:35−39

doi: 10.1094/CCHEM.2003.80.1.35
[106]

Beghin AS, Ooms N, Brijs K, Pareyt B, Moldenaers P, et al. 2021. How yeast impacts the effect of ascorbic acid on wheat flour dough extensional rheology. Food Biophysics 16:406−14

doi: 10.1007/s11483-021-09679-7
[107]

Selinheimo E, Autio K, Kruus K, Buchert J. 2007. Elucidating the mechanism of laccase and tyrosinase in wheat bread making. Journal of Agricultural and Food Chemistry 55:6357−65

doi: 10.1021/jf0703349
[108]

Piber M, Koehler P. 2005. Identification of dehydro-ferulic acid-tyrosine in rye and wheat: evidence for a covalent cross-link between arabinoxylans and proteins. Journal of Agricultural and Food Chemistry 53:5276−84

doi: 10.1021/jf050395b
[109]

McCann TH, Small DM, Batey IL, Wrigley CW, Day L. 2009. Protein–lipid interactions in gluten elucidated using acetic acid fractionation. Food chemistry 115:105−12

doi: 10.1016/j.foodchem.2008.11.070
[110]

Liu G, Wang J, Hou Y, Huang YB, Zhang YP, et al. 2017. Recombinant wheat endoplasmic reticulum oxidoreductin 1 improved wheat dough properties and bread quality. Journal of Agricultural and Food Chemistry 65:2162−71

doi: 10.1021/acs.jafc.6b05192
[111]

Du N, Wei ZC, Deng YY, Zhang Y, Tang XJ, et al. 2020. Characterization of recombinant rice quiescin sulfhydryl oxidase and its improvement effect on wheat flour-processing quality. Food Chemistry 333:127492

doi: 10.1016/j.foodchem.2020.127492
[112]

Pescador-Piedra J, Garrido-Castro A, Chanona-Pérez J, Farrera-Rebollo R, Gutiérrez-López G, et al. 2009. Effect of the addition of mixtures of glucose oxidase, peroxidase and xylanase on rheological and breadmaking properties of wheat flour. International Journal of Food Properties 12:748−65

doi: 10.1080/10942910802036723
[113]

Mabrouk SB, Hmida BBH, Sebii H, Fendri A, Sayari A. 2025. Production of an amylase from newly Bacillus strain: optimization by response-surface methodology, characterization and application with a fungal lipase in bread making. International Journal of Biological Macromolecules 285:138147

doi: 10.1016/j.ijbiomac.2024.138147
[114]

Colakoglu AS, Özkaya H. 2012. Potential use of exogenous lipases for DATEM replacement to modify the rheological and thermal properties of wheat flour dough. Journal of Cereal Science 55:397−404

doi: 10.1016/j.jcs.2012.02.001
[115]

Navrot N, Buhl Holstborg R, Hägglund P, Povlsen IL, Svensson B. 2018. New insights into the potential of endogenous redox systems in wheat bread dough. Antioxidants 7:190

doi: 10.3390/antiox7120190