[1]

Li H, Chen L, Li W, Jin L, Qian Z, et al. 2020. Textural research on Chinese cordyceps. Journal of Fungal Research 18:68−73 (in Chinese)

doi: 10.13341/j.jfr.2020.1332
[2]

Xia MC, Zhan Q, Cai L, Wu J, Yang L, et al. 2021. Investigation into the content change and distribution of active components in Cordyceps sinensis with growth cycle by direct TOF-SIMS detection. Microchemical Journal 164:106026

doi: 10.1016/j.microc.2021.106026
[3]

Li LQ, Song AX, Wong WT, Wu JY. 2021. Modification and enhanced anti-inflammatory activity by Bifidobacterial fermentation of an exopolysaccharide from a medicinal fungus Cs-HK1. International Journal of Biological Macromolecules 188:586−94

doi: 10.1016/j.ijbiomac.2021.08.084
[4]

Tong X, Zhang H, Wang F, Xue Z, Cao J, et al. 2020. Comparative transcriptome analysis revealed genes involved in the fruiting body development of Ophiocordyceps sinensis. PeerJ 8:e8379

doi: 10.7717/peerj.8379
[5]

Li Y, Wang XL, Jiao L, Jiang Y, Li H, et al. 2011. A survey of the geographic distribution of Ophiocordyceps sinensis. Journal of Microbiology 49:913−19

doi: 10.1007/s12275-011-1193-z
[6]

Quan QM, Chen LL, Wang X, Li S, Yang XL, et al. 2014. Genetic diversity and distribution patterns of host insects of caterpillar fungus Ophiocordyceps sinensis in the Qinghai-Tibet plateau. PLoS ONE 9:e92293

doi: 10.1371/journal.pone.0092293
[7]

Yue K, Ye M, Lin X, Zhou Z. 2013. The artificial cultivation of medicinal caterpillar fungus, Ophiocordyceps sinensis (Ascomycetes): a review. International Journal of Medicinal Mushrooms 15:425−34

doi: 10.1615/intjmedmushr.v15.i5.10
[8]

Li Y, Jiao L, Yao YJ. 2013. Non-concerted ITS evolution in fungi, as revealed from the important medicinal fungus Ophiocordyceps sinensis. Molecular Phylogenetics and Evolution 68:373−79

doi: 10.1016/j.ympev.2013.04.010
[9]

Wang L, Wang G, Zhang J, Zhang G, Jia L, et al. 2011. Extraction optimization and antioxidant activity of intracellular selenium polysaccharide by Cordyceps sinensis SU-02. Carbohydrate Polymers 86:1745−50

doi: 10.1016/j.carbpol.2011.07.007
[10]

Cheong KL, Wang LY, Wu DT, Hu DJ, Zhao J, et al. 2016. Microwave-assisted extraction, chemical structures, and chain conformation of polysaccharides from a novel Cordyceps sinensis fungus UM01. Journal of Food Science 81:C2167−C2174

doi: 10.1111/1750-3841.13407
[11]

Yan JK, Wang WQ, Li L, Wu JY. 2011. Physiochemical properties and antitumor activities of two α-glucans isolated from hot water and alkaline extracts of Cordyceps (Cs-HK1) fungal mycelia. Carbohydrate Polymers 85:753−58

doi: 10.1016/j.carbpol.2011.03.043
[12]

Huang QL, Siu KC, Wang WQ, Cheung YC, Wu JY. 2013. Fractionation, characterization and antioxidant activity of exopolysaccharides from fermentation broth of a Cordyceps sinensis fungus. Process Biochemistry 48:380−86

doi: 10.1016/j.procbio.2013.01.001
[13]

Wang J, Nie S, Kan L, Chen H, Cui SW, et al. 2017. Comparison of structural features and antioxidant activity of polysaccharides from natural and cultured Cordyceps sinensis. Food Science and Biotechnology 26:55−62

doi: 10.1007/s10068-017-0008-3
[14]

Yan JK, Li L, Wang ZM, Wu JY. 2010. Structural elucidation of an exopolysaccharide from mycelial fermentation of a Tolypocladium sp. fungus isolated from wild Cordyceps sinensis. Carbohydrate Polymers 79:125−30

doi: 10.1016/j.carbpol.2009.07.047
[15]

Chen X, Ding ZY, Wang WQ, Siu KC, Wu JY. 2014. An antioxidative galactomannan-protein complex isolated from fermentation broth of a medicinal fungus Cs-HK1. Carbohydrate Polymers 112:469−74

doi: 10.1016/j.carbpol.2014.06.021
[16]

Hu T, Jiang C, Huang Q, Sun F. 2016. A comb-like branched β-D-glucan produced by a Cordyceps sinensis fungus and its protective effect against cyclophosphamide-induced immunosuppression in mice. Carbohydrate Polymers 142:259−67

doi: 10.1016/j.carbpol.2016.01.036
[17]

Chen X, Siu KC, Cheung YC, Wu JY. 2014. Structure and properties of a (1→3)-β-D-glucan from ultrasound-degraded exopolysaccharides of a medicinal fungus. Carbohydrate Polymers 106:270−75

doi: 10.1016/j.carbpol.2014.02.040
[18]

Chen S, Siu KC, Wang WQ, Liu XX, Wu JY. 2013. Structure and antioxidant activity of a novel poly-N-acetylhexosamine produced by a medicinal fungus. Carbohydrate Polymers 94:332−38

doi: 10.1016/j.carbpol.2012.12.067
[19]

Wang ZM, Peng X, Lee KD, Tang JC, Cheung PC, et al. 2011. Structural characterisation and immunomodulatory property of an acidic polysaccharide from mycelial culture of Cordyceps sinensis fungus Cs-HK1. Food Chemistry 125:637−43

doi: 10.1016/j.foodchem.2010.09.052
[20]

Gong Y, Cao C, Ai C, Wen C, Wang L, et al. 2020. Structural characterization and immunostimulatory activity of a glucan from Cyclina sinensis. International Journal of Biological Macromolecules 161:779−86

doi: 10.1016/j.ijbiomac.2020.06.020
[21]

Wang SH, Yang WB, Liu YC, Chiu YH, Chen CT, et al. 2011. A potent sphingomyelinase inhibitor from Cordyceps mycelia contributes its cytoprotective effect against oxidative stress in macrophages. Journal of Lipid Research 52:471−79

doi: 10.1194/jlr.M011015
[22]

Tang H, Wei W, Wang W, Zha Z, Li T, et al. 2017. Effects of cultured Cordyceps mycelia polysaccharide A on tumor neurosis factor-α induced hepatocyte injury with mitochondrial abnormality. Carbohydrate Polymers 163:43−53

doi: 10.1016/j.carbpol.2017.01.019
[23]

Cheong KL, Meng LZ, Chen XQ, Wang LY, Wu DT, et al. 2016. Structural elucidation, chain conformation and immuno-modulatory activity of glucogalactomannan from cultured Cordyceps sinensis fungus UM01. Journal of Functional Foods 25:174−85

doi: 10.1016/j.jff.2016.06.002
[24]

Meng LZ, Feng K, Wang LY, Cheong KL, Nie H, et al. 2014. Activation of mouse macrophages and dendritic cells induced by polysaccharides from a novel Cordyceps sinensis fungus UM01. Journal of Functional Foods 9:242−53

doi: 10.1016/j.jff.2014.04.029
[25]

Cheung JKH, Li J, Cheung AWH, Zhu Y, Zheng KYZ, et al. 2009. Cordysinocan, a polysaccharide isolated from cultured Cordyceps, activates immune responses in cultured T-lymphocytes and macrophages: signaling cascade and induction of cytokines. Journal of Ethnopharmacology 124:61−68

doi: 10.1016/j.jep.2009.04.010
[26]

Zhu ZY, Liu XC, Fang XN, Sun HQ, Yang XY, et al. 2016. Structural characterization and anti-tumor activity of polysaccharide produced by Hirsutella sinensis. International Journal of Biological Macromolecules 82:959−66

doi: 10.1016/j.ijbiomac.2015.10.075
[27]

Wang Y, Wang M, Ling Y, Fan W, Wang Y, et al. 2009. Structural determination and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps sinensis. The American Journal of Chinese Medicine 37:977−89

doi: 10.1142/S0192415X09007387
[28]

Xiang F, Lin L, Hu M, Qi X. 2016. Therapeutic efficacy of a polysaccharide isolated from Cordyceps sinensis on hypertensive rats. International Journal of Biological Macromolecules 82:308−14

doi: 10.1016/j.ijbiomac.2015.09.060
[29]

Wang Y, Yin H, Lv X, Wang Y, Gao H, et al. 2010. Protection of chronic renal failure by a polysaccharide from Cordyceps sinensis. Fitoterapia 81:397−402

doi: 10.1016/j.fitote.2009.11.008
[30]

Akaki J, Matsui Y, Kojima H, Nakajima S, Kamei K, et al. 2009. Structural analysis of monocyte activation constituents in cultured mycelia of Cordyceps sinensis. Fitoterapia 80:182−87

doi: 10.1016/j.fitote.2009.01.007
[31]

Zhang J, Yu Y, Zhang Z, Ding Y, Dai X, et al. 2011. Effect of polysaccharide from cultured Cordyceps sinensis on immune function and anti-oxidation activity of mice exposed to 60Co. International Immunopharmacology 11:2251−57

doi: 10.1016/j.intimp.2011.09.019
[32]

Liu Y, Li QZ, Li LDJ, Zhou XW. 2021. Immunostimulatory effects of the intracellular polysaccharides isolated from liquid culture of Ophiocordyceps sinensis (Ascomycetes) on RAW264.7 cells via the MAPK and PI3K/Akt signaling pathways. Journal of Ethnopharmacology 275:114130

doi: 10.1016/j.jep.2021.114130
[33]

Rong L, Li G, Zhang Y, Xiao Y, Qiao Y, et al. 2021. Structure and immunomodulatory activity of a water-soluble α-glucan from Hirsutella sinensis mycelia. International Journal of Biological Macromolecules 189:857−68

doi: 10.1016/j.ijbiomac.2021.08.185
[34]

Mei YX, Yang W, Zhu PX, Peng N, Zhu H, et al. 2014. Isolation, characterization, and antitumor activity of a novel heteroglycan from cultured mycelia of Cordyceps sinensis. Planta Medica 80:1107−12

doi: 10.1055/s-0034-1382960
[35]

Kiho T, Ookubo K, Usui S, Ukai S, Hirano K. 1999. Structural features and hypoglycemic activity of a polysaccharide (CS-F10) from the cultured mycelium of Cordyceps sinensis. Biological and Pharmaceutical Bulletin 22:966−70

doi: 10.1248/bpb.22.966
[36]

Wu Y, Hu N, Pan Y, Zhou L, Zhou X. 2007. Isolation and characterization of a mannoglucan from edible Cordyceps sinensis mycelium. Carbohydrate Research 342:870−75

doi: 10.1016/j.carres.2007.01.005
[37]

Wu Y, Sun C, Pan Y. 2005. Structural analysis of a neutral (1→3), (→4)-β-D-glucan from the mycelia of Cordyceps sinensis. Journal of Natural Products 68:812−14

doi: 10.1021/np0496035
[38]

Wu Y, Sun C, Pan Y. 2006. Studies on isolation and structural features of a polysaccharide from the mycelium of an Chinese edible fungus (Cordyceps sinensis). Carbohydrate Polymers 63:251−56

doi: 10.1016/j.carbpol.2005.08.053
[39]

Li LF, But GW, Zhang QW, Liu M, Chen MM, et al. 2021. A specific and bioactive polysaccharide marker for Cordyceps. Carbohydrate Polymers 269:118343

doi: 10.1016/j.carbpol.2021.118343
[40]

Sheng L, Chen J, Li J, Zhang W. 2011. An exopolysaccharide from cultivated Cordyceps sinensis and its effects on cytokine expressions of immunocytes. Applied Biochemistry and Biotechnology 163:669−78

doi: 10.1007/s12010-010-9072-3
[41]

Kim SD. 2010. Isolation, structure and cholesterol esterase inhibitory activity of a polysaccharide, PS-A, from Cordyceps sinensis. Journal of the Korean Society for Applied Biological Chemistry 53:784−89

doi: 10.3839/jksabc.2010.118
[42]

Li LQ, Song AX, Wong WT, Wu JY. 2021. Isolation and assessment of a highly-active anti-inflammatory exopolysaccharide from mycelial fermentation of a medicinal fungus Cs-HK1. International Journal of Molecular Sciences 22:2450

doi: 10.3390/ijms22052450
[43]

Gong M, Zhu Q, Wang T, Wang X, Ma J, et al. 1990. Molecular structure and immunoactivity of the polysaccharide from Cordyceps sinensis (Berk) Sacc. Chinese Journal of Biochemistry and Molecular Biology 6:486−92 (in Chinese)

[44]

Zhang W, Yang J, Chen J, Hou Y, Han X. 2005. Immunomodulatory and antitumour effects of an exopolysaccharide fraction from cultivated Cordyceps sinensis (Chinese caterpillar fungus) on tumour-bearing mice. Biotechnology and Applied Biochemistry 42:9−15

doi: 10.1042/BA20040183
[45]

Wang Y, Yin HP, Chen T, Wang M. 2009. Preliminary structural identification and protection on renal cell injury of acidic polysaccharide from Cordyceps sinensis. Journal of China Pharmaceutical University 40:559−64

doi: 10.3321/j.issn:1000-5048.2009.06.018
[46]

Yang S, Zhang H. 2016. Production of intracellular selenium-enriched polysaccharides from thin stillage by Cordyceps sinensis and its bioactivities. Food & Nutrition Research 60:30153

doi: 10.3402/fnr.v60.30153
[47]

Nie SP, Cui SW, Phillips AO, Xie MY, Phillips GO, et al. 2011. Elucidation of the structure of a bioactive hydrophilic polysaccharide from Cordyceps sinensis by methylation analysis and NMR spectroscopy. Carbohydrate Polymers 84:894−99

doi: 10.1016/j.carbpol.2010.12.033
[48]

Kiho T, Tabata H, Ukai S, Hara C. 1986. A minor, protein-containing galactomannan from a sodium carbonate extract of Cordyceps sinensis. Carbohydrate Research 156:189−97

doi: 10.1016/S0008-6215(00)90110-1
[49]

Wu Y, Sun H, Qin F, Pan Y, Sun C. 2006. Effect of various extracts and a polysaccharide from the edible mycelia of Cordyceps sinensis on cellular and humoral immune response against ovalbumin in mice. Phytotherapy Research 20:646−52

doi: 10.1002/ptr.1921
[50]

Chinese Pharmacopoeia Commission. 2020. Pharmacopoeia of the People's Republic of China. Beijing: China Medical Science Press

[51]

Hu H, Xiao L, Zheng B, Wei X, Ellis A, et al. 2015. Identification of chemical markers in Cordyceps sinensis by HPLC-MS/MS. Analytical and Bioanalytical Chemistry 407:8059−66

doi: 10.1007/s00216-015-8978-6
[52]

Yang FQ, Li DQ, Feng K, Hu DJ, Li SP. 2010. Determination of nucleotides, nucleosides and their transformation products in Cordyceps by ion-pairing reversed-phase liquid chromatography-mass spectrometry. Journal of Chromatography A 1217:5501−10

doi: 10.1016/j.chroma.2010.06.062
[53]

Zong SY, Han H, Wang B, Li N, Dong TT, et al. 2015. Fast simultaneous determination of 13 nucleosides and nucleobases in Cordyceps sinensis by UHPLC–ESI–MS/MS. Molecules 20:21816−25

doi: 10.3390/molecules201219807
[54]

Zhang J, Wang P, Wei X, Li L, Cheng H, et al. 2015. A metabolomics approach for authentication of Ophiocordyceps sinensis by liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Food Research International 76:489−97

doi: 10.1016/j.foodres.2015.07.025
[55]

Zou J, Wu L, He ZM, Zhang P, Chen ZH. 2017. Determination of the main nucleosides and nucleobases in natural and cultured Ophiocordyceps xuefengensis. Molecules 22:1530

doi: 10.3390/molecules22091530
[56]

Qian ZM, Sun MT, Li WQ, Li GR, Li WJ. 2019. Content analyses of three kinds of sterols in different development stages of Chinese cordyceps. Journal of Fungal Research 38:539−44

[57]

Yang FQ, Feng K, Zhao J, Li SP. 2009. Analysis of sterols and fatty acids in natural and cultured Cordyceps by one-step derivatization followed with gas chromatography-mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 49:1172−78

doi: 10.1016/j.jpba.2009.02.025
[58]

Liu QB, Lu JG, Jiang ZH, Zhang W, Li WJ, et al. 2022. In situ chemical profiling and imaging of cultured and natural Cordyceps sinensis by TOF-SIMS. Frontiers in Chemistry 10:862007

doi: 10.3389/fchem.2022.862007
[59]

Qin Y, Zhou R, Jin J, Xie J, Zhang S. 2020. UPLC–ESI–Q–TOF–MS/MS analysis of anticancer fractions from Ophiocordyceps xuefengensis and Ophiocordyceps sinensis. Biomedical Chromatography 34:e4841

doi: 10.1002/bmc.4841
[60]

Hu Z, Ye M, Xia L, Tu W, Li L, et al. 2006. Purification and characterization of an antibacterial protein from the cultured mycelia of Cordyceps sinensis. Wuhan University Journal of Natural Sciences 11:709−14

doi: 10.1007/bf02836695
[61]

Ye M, Hu Z, Fan Y, He L, Xia F, et al. 2004. Purification and characterization of an acid deoxyribonuclease from the cultured mycelia of Cordyceps sinensis. Journal of Biochemistry & Molecular Biology 37:466−73

doi: 10.5483/bmbrep.2004.37.4.466
[62]

Li HP, Hu Z, Yuan JL, Fan HD, Chen W, et al. 2007. A novel extracellular protease with fibrinolytic activity from the culture supernatant of Cordyceps sinensis: purification and characterization. Phytotherapy Research 21:1234−41

doi: 10.1002/ptr.2246
[63]

Tong X, Wang Y, Xue Z, Chen L, Qiu Y, et al. 2018. Proteomic identification of marker proteins and its application to authenticate Ophiocordyceps sinensis. 3 Biotech 8:246

doi: 10.1007/s13205-018-1265-4
[64]

Xiao YC, Hu FZ, Dong Q, Chi XF, Ji T. 2014. Comparative study of fifteen kinds of nucleosides in Cordyceps sinensis from different origin of Yushu prefeuture, Qinghai Province. Chinese Pharmaceutical Journal 49:1983−88

[65]

Chen L, Liu Y, Guo Q, Zheng Q, Zhang W. 2018. Metabolomic comparison between wild Ophiocordyceps sinensis and artificial cultured Cordyceps militaris. Biomedical Chromatography 32:e4279

doi: 10.1002/bmc.4279
[66]

Li YH, Li XL. 1991. Determination of ergosterol in Cordyceps sinensis and Cordyceps black-bone chicken capsules by HPLC. Acta Pharmaceutica Sinica 26:768−71 (in Chinese)

[67]

Bok JW, Lermer L, Chilton J, Klingeman HG, Towers GH. 1999. Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry 51:891−98

doi: 10.1016/S0031-9422(99)00128-4
[68]

Zhao J, Shi T, Zhu W, Chen L, Guan Y, et al. 2020. Quality control method of sterols in fermented Cordyceps sinensis based on combined fingerprint and quantitative analysis of multicomponents by single marker. Journal of Food Science 85:2994−3002

doi: 10.1111/1750-3841.15412
[69]

Wu X, Liu F, Zeng W, Zhong G, Tu Y, et al. 2010. [Relevance analysis of amino acid contents in cultivated Cordyceps and cultivation materials]. Zhongguo Zhong Yao Za Zhi 35:142−44

doi: 10.4268/cjcmm20100203
[70]

Jia JM, Ma XC, Wu CF, Wu LJ, Hu GS. 2005. Cordycedipeptide A, a new cyclodipeptide from the culture liquid of Cordyceps sinensis (Berk.) Sacc. Chemical & Pharmaceutical Bulletin 53:582−83

doi: 10.1248/cpb.53.582
[71]

Jia JM, Tao HH, Feng BM. 2009. Cordyceamides A and B from the culture liquid of Cordyceps sinensis (BERK.) SACC. Chemical & Pharmaceutical Bulletin 57:99−101

doi: 10.1248/cpb.57.99
[72]

Qi W, Zhang Y, Yan YB, Lei W, Wu ZX, et al. 2013. The protective effect of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis, on diabetic osteopenia in alloxan-induced diabetic rats. Evidence-Based Complementary and Alternative Medicine 2013:985636

doi: 10.1155/2013/985636
[73]

Chatterjee R, Srinivasan KS, Maiti PC. 1957. Cordyceps sinesis (Berkeley) saccardo: structure of cordycepic acid. Journal of the American Pharmaceutical Association American Pharmaceutical Association 46:114−18

doi: 10.1002/jps.3030460211
[74]

Xia EH, Yang DR, Jiang JJ, Zhang QJ, Liu Y, et al. 2017. The caterpillar fungus, Ophiocordyceps sinensis, genome provides insights into highland adaptation of fungal pathogenicity. Scientific Reports 7:1806

doi: 10.1038/s41598-017-01869-z
[75]

Jin LQ, Xu ZW, Zhang B, Yi M, Weng CY, et al. 2020. Genome sequencing and analysis of fungus Hirsutella sinensis isolated from Ophiocordyceps sinensis. AMB Express 10:105

doi: 10.1186/s13568-020-01039-x
[76]

Zhong X, Gu L, Wang H, Lian D, Zheng Y, et al. 2018. Profile of Ophiocordyceps sinensis transcriptome and differentially expressed genes in three different mycelia, sclerotium and fruiting body developmental stages. Fungal Biology 122:943−51

doi: 10.1016/j.funbio.2018.05.011
[77]

Zhang B, Li B, Men XH, Xu ZW, Wu H, et al. 2020. Proteome sequencing and analysis of Ophiocordyceps sinensis at different culture periods. BMC Genomics 21:886

doi: 10.1186/s12864-020-07298-z
[78]

Li M, Meng Q, Zhang H, Shu R, Zhao Y, et al. 2020. Changes in transcriptomic and metabolomic profiles of morphotypes of Ophiocordyceps sinensis within the hemocoel of its host larvae, Thitarodes xiaojinensis. BMC Genomics 21:789

doi: 10.1186/s12864-020-07209-2
[79]

Zhong X, Gu L, Li SS, Kan XT, Zhang GR, et al. 2016. Transcriptome analysis of Ophiocordyceps sinensis before and after infection of Thitarodes larvae. Fungal Biology 120:819−26

doi: 10.1016/j.funbio.2016.02.003
[80]

Wang P, Wei W, Ye W, Li X, Zhao W, et al. 2019. Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency. Cell Discovery 5:5

doi: 10.1038/s41421-018-0075-5
[81]

Yue M, Liu M, Gao S, Ren X, Zhou S, et al. 2024. High-level De novo production of (2S)-eriodictyol in Yarrowia lipolytica by metabolic pathway and NADPH regeneration engineering. Journal of Agricultural and Food Chemistry 72:4292−300

doi: 10.1021/acs.jafc.3c08861
[82]

Suhadolnik RJ, Cory JG. 1964. Further evidence for the biosynthesis of cordycepin and proof of the structure of 3-deoxyribose. Biochimica et Biophysica Acta 91:661−62

doi: 10.1016/0926-6550(64)90021-0
[83]

Zheng P, Xia Y, Xiao G, Xiong C, Hu X, et al. 2011. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional chinese medicine. Genome Biology 12:R116

doi: 10.1186/gb-2011-12-11-r116
[84]

Xiang L, Li Y, Zhu Y, Luo H, Li C, et al. 2014. Transcriptome analysis of the Ophiocordyceps sinensis fruiting body reveals putative genes involved in fruiting body development and cordycepin biosynthesis. Genomics 103:154−59

doi: 10.1016/j.ygeno.2014.01.002
[85]

Lin S, Liu ZQ, Xue YP, Baker PJ, Wu H, et al. 2016. Biosynthetic pathway analysis for improving the cordycepin and cordycepic acid production in Hirsutella sinensis. Applied Biochemistry and Biotechnology 179:633−49

doi: 10.1007/s12010-016-2020-0
[86]

Kato T, Ahmad S, Park EY. 2017. Functional analysis of ribonucleotide reductase from Cordyceps militaris expressed in Escherichia coli. Applied Biochemistry and Biotechnology 182:1307−17

doi: 10.1007/s12010-017-2400-0
[87]

Xia Y, Luo F, Shang Y, Chen P, Lu Y, Wang C. 2017. Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin. Cell Chemical Biology 24:1479−89.e4

doi: 10.1016/j.chembiol.2017.09.001
[88]

Zhao X, Zhang G, Li C, Ling J. 2019. Cordycepin and pentostatin biosynthesis gene identified through transcriptome and proteomics analysis of Cordyceps kyushuensis Kob. Microbiological Research 218:12−21

doi: 10.1016/j.micres.2018.09.005
[89]

Liu T, Liu Z, Yao X, Huang Y, Qu Q, et al. 2018. Identification of cordycepin biosynthesis-related genes through de novo transcriptome assembly and analysis in Cordyceps cicadae. Royal Society Open Science 5:181247

doi: 10.1098/rsos.181247
[90]

Liu X, Jiang J, Shao J, Yin Y, Ma Z. 2010. Gene transcription profiling of Fusarium graminearum treated with an azole fungicide tebuconazole. Applied Microbiology and Biotechnology 85:1105−14

doi: 10.1007/s00253-009-2273-4
[91]

Hu Z, He B, Ma L, Sun Y, Niu Y, et al. 2012. Recent advances in ergosterol biosynthesis and regulation mechanisms in Saccharomyces cerevisiae. Indian Journal of Microbiology 57:270−77

doi: 10.1007/s12088-017-0657-1
[92]

Tsay YH, Robinson GW. 1991. Cloning and characterization of ERG8, an essential gene of Saccharomyces cerevisiae that encodes phosphomevalonate kinase. Molecular and Cellular Biology 11:620−31

doi: 10.1128/mcb.11.2.620-631.1991
[93]

Zheng H, Qiu X, Roy D, Segura M, Du P, et al. 2017. Genotyping and investigating capsular polysaccharide synthesis gene loci of non-serotypeable Streptococcus suis isolated from diseased pigs in Canada. Veterinary Research 48:10

doi: 10.1186/s13567-017-0417-6
[94]

Mohammadi T, Dam V, Sijbrandi R, Vernet T, Zapun A, et al. 2011. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO Journal 30:1425−32

doi: 10.1038/emboj.2011.61
[95]

Yang S, Yang X, Zhang H. 2020. Extracellular polysaccharide biosynthesis in Cordyceps. Critical Reviews in Microbiology 46:359−80

doi: 10.1080/1040841X.2020.1794788
[96]

Wang P, Guo H, Yi W, Song J. 2008. Current understanding on biosynthesis of microbial polysaccharides. Current Topics in Medicinal Chemistry 8:141−51

doi: 10.2174/156802608783378873
[97]

Kalynych S, Morona R, Cygler M. 2014. Progress in understanding the assembly process of bacterial O-antigen. FEMS Microbiology Reviews 38:1048−65

doi: 10.1111/1574-6976.12070
[98]

Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, et al. 2014. Structural diversity in Salmonella O antigens and its genetic basis. FEMS Microbiology Reviews 38:56−89

doi: 10.1111/1574-6976.12034
[99]

Shiqiang W, Bin W, Wenping H, Junfeng N, Kaikai D, et al. 2017. De novo assembly and analysis of Polygonatum sibiricum transcriptome and identification of genes involved in polysaccharide biosynthesis. International Journal of Molecular Sciences 18:1950

doi: 10.3390/ijms18091950
[100]

Zhou J, Bai Y, Dai R, Guo X, Liu ZH, et al. 2018. Improved polysaccharide production by homologous co-overexpression of phosphoglucomutase and UDP glucose pyrophosphorylase genes in the mushroom Coprinopsis cinerea. Journal of Agricultural and Food Chemistry 66:4702−709

doi: 10.1021/acs.jafc.8b01343
[101]

Wei S, Peng W, Zhang C, Su L, Zhang Z, et al. 2021. Cordyceps sinensis aqueous extract regulates the adaptive immunity of mice subjected to 60Co γ irradiation. Phytotherapy Research 35:5163−77

doi: 10.1002/ptr.7186
[102]

Wu R, Jia Q, Li X, Ma Y, Zhang J, et al. 2022. Preparation of the sphingolipid fraction from mycelia of Cordyceps sinensis and its immunosuppressive activity. Journal of Ethnopharmacology 291:115126

doi: 10.1016/j.jep.2022.115126
[103]

Li SP, Li P, Dong TTX, Tsim KWK. 2001. Anti-oxidation activity of different types of natural Cordyceps sinensis and cultured Cordyceps mycelia. Phytomedicine 8:207−12

doi: 10.1078/0944-7113-00030
[104]

Chen S, Wang J, Fang Q, Dong N, Nie S. 2019. Polysaccharide from natural Cordyceps sinensis ameliorated intestinal injury and enhanced antioxidant activity in immunosuppressed mice. Food Hydrocolloids 89:661−67

doi: 10.1016/j.foodhyd.2018.11.018
[105]

Wang J, Liu YM, Cao W, Yao KW, Liu ZQ, et al. 2012. Anti-inflammation and antioxidant effect of Cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis, in middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Metabolic Brain Disease 27:159−65

doi: 10.1007/s11011-012-9282-1
[106]

Li XL, Li D. 2013. Enhancing antioxidant activity of soluble polysaccharide from the submerged fermentation product of Cordyceps sinensis by using cellulase. Advanced Materials Research 641−642:975−78

doi: 10.4028/www.scientific.net/AMR.641-642.975
[107]

Chen J, Zhang W, Lu T, Li J, Zheng Y, et al. 2006. Morphological and genetic characterization of a cultivated Cordyceps sinensis fungus and its polysaccharide component possessing antioxidant property in H22 tumor-bearing mice. Life Sciences 78:2742−48

doi: 10.1016/j.lfs.2005.10.047
[108]

Wang Y, Wang Y, Liu D, Wang W, Zhao H, et al. 2015. Cordyceps sinensis polysaccharide inhibits PDGF-BB-induced inflammation and ROS production in human mesangial cells. Carbohydrate Polymers 125:135−45

doi: 10.1016/j.carbpol.2015.02.012
[109]

Chiou YL, Lin CY. 2012. The extract of Cordyceps sinensis inhibited airway inflammation by blocking NF-κB activity. Inflammation 35:985−93

doi: 10.1007/s10753-011-9402-9
[110]

Tan L, Song X, Ren Y, Wang M, Guo C, et al. 2021. Anti-inflammatory effects of cordycepin: a review. Phytotherapy Research 35:1284−97

doi: 10.1002/ptr.6890
[111]

Wu JY, Zhang QX, Leung PH. 2007. Inhibitory effects of ethyl acetate extract of Cordyceps sinensis mycelium on various cancer cells in culture and B16 melanoma in C57BL/6 mice. Phytomedicine International: Journal of Phytotherapy & Phytopharmacology 14:43−49

doi: 10.1016/j.phymed.2005.11.005
[112]

Liu A, Wu J, Li A, Bi W, Liu T, et al. 2016. The inhibitory mechanism of Cordyceps sinensis on cigarette smoke extract-induced senescence in human bronchial epithelial cells. International Journal of Chronic Obstructive Pulmonary Disease 11:1721−31

doi: 10.2147/COPD.S107396
[113]

Zhang Q, Xiao X, Li M, Yu M, Ping F. 2022. Bailing capsule (Cordyceps sinensis) ameliorates renal triglyceride accumulation through the PPARα pathway in diabetic rats. Frontiers in Pharmacology 13:915592

doi: 10.3389/fphar.2022.915592
[114]

Wang C, Hou XX, Rui HL, Li LJ, Zhao J, et al. 2018. Artificially cultivated Ophiocordyceps sinensis alleviates diabetic nephropathy and its podocyte injury via inhibiting P2X7R expression and NLRP3 inflammasome activation. Journal of Diabetes Research 2018:1390418

doi: 10.1155/2018/1390418
[115]

Lu WJ, Chang NC, Jayakumar T, Liao JC, Lin MJ, et al. 2014. Ex vivo and in vivo studies of CME-1, a novel polysaccharide purified from the mycelia of Cordyceps sinensis that inhibits human platelet activation by activating adenylate cyclase/cyclic AMP. Thrombosis Research 134:1301−10

doi: 10.1016/j.thromres.2014.09.023
[116]

Hsu CC, Huang YL, Tsai SJ, Sheu CC, Huang BM. 2003. In vivo and in vitro stimulatory effects of Cordyceps sinensis on testosterone production in mouse Leydig cells. Life Sciences 73:2127−36

doi: 10.1016/S0024-3205(03)00595-2
[117]

Xiao Y, Zhang X, Huang Q. 2022. Protective effects of Cordyceps sinensis exopolysaccharideselenium nanoparticles on H2O2-induced oxidative stress in HepG2 cells. International Journal of Biological Macromolecules: Structure, Function and Interactions 213:339−51

doi: 10.1016/j.ijbiomac.2022.05.173
[118]

Ku CW, Ho TJ, Huang CY, Chu PM, Ou HC, et al. 2021. Cordycepin attenuates palmitic acid-induced inflammation and apoptosis of vascular endothelial cells through mediating PI3K/Akt/ENOS signaling pathway. The American Journal of Chinese Medicine 49:1703−22

doi: 10.1142/S0192415X21500804
[119]

Bai X, Tang Y, Lin Y, Zhao Y, Tan T, et al. 2018. Protective effect of Cordyceps sinensis extract on rat brain microvascular endothelial cells injured by oxygen−glucose deprivation. Traditional Chinese Medical Sciences 5:8

doi: 10.1016/j.jtcms.2017.12.002
[120]

Yuan Q, Xie F, Tan J, Yuan Y, Mei H, et al. 2022. Extraction, structure and pharmacological effects of the polysaccharides from Cordyceps sinensis: a review. Journal of Functional Foods 89:104909

doi: 10.1016/j.jff.2021.104909
[121]

Moroder L, Musiol HJ. 2017. Insulin-from its discovery to the industrial synthesis of modern insulin analogues. Angewandte Chemie International Edition 56:10656−69

doi: 10.1002/anie.201702493
[122]

Zhu SD, Huang LQ, Guo LP, Ma XT, Hao QX, et al. 2017. Climate change impacts on yield of Cordyceps sinensis and research on yield prediction model of C. sinensis. China Journal of Chinese Materia Medica 42:1281−86

doi: 10.19540/j.cnki.cjcmm.2017.0055
[123]

Zhou J. 2024. Correlation analysis between Ophiocordyceps sinensis population metabolomics and environmental factors. Doctoral dissertation (in Chinese). Tibet University, China

[124]

Jiang B, Shi Y, Peng Y, Jia Y, Yan Y, et al. 2020. Cold-induced CBF-PIF3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in Arabidopsis. Molecular Plant 13:894−906

doi: 10.1016/j.molp.2020.04.006
[125]

Wang X, Ma LQ, Rathinasabapathi B, Cai Y, Liu YG, et al. 2011. Mechanisms of efficient arsenite uptake by arsenic hyperaccumulator Pteris vittata. Environmental Science & Technology 45:9719−25

doi: 10.1021/es2018048
[126]

Zhang Y. 2012. Biology of the Chinese caterpillar fungus Ophiocordyceps sinensis (in Chinese). Beijing: Science Press

[127]

Tao Y, Luo R, Xiang Y, Lei M, Peng X, et al. 2024. Use of bailing capsules (Cordyceps sinensis) in the treatment of chronic kidney disease: a meta-analysis and network pharmacology. Frontiers in Pharmacology 15:1342831

doi: 10.3389/fphar.2024.1342831
[128]

Yang Z, Zhao N, Li J, Wu Z, Ma J. 2024. Effect of traditional Chinese medicine on Graves' disease: a network meta-analysis. Frontiers in Pharmacology 15:1411459

doi: 10.3389/fphar.2024.1411459
[129]

Cao L, Ye Y, Han R. 2015. Fruiting body production of the medicinal Chinese caterpillar mushroom, Ophiocordyceps sinensis (ascomycetes), in artificial medium. International Journal of Medicinal Mushrooms 17:1107−12

doi: 10.1615/intjmedmushrooms.v17.i11.110