[1]

Wang H, Feng S, Lu J, Shi N, Liu J. 2008. Phylogenetic study and molecular identification of 31 Dendrobium species using inter-simple sequence repeat (ISSR) markers. Scientia Horticulturae 122:440−47

doi: 10.1016/j.scienta.2009.06.005
[2]

Ketsa S, Warrington IJ. 2023. The dendrobium orchid: botany, horticulture, and utilization. Crop Science 63:1829−88

doi: 10.1002/csc2.20952
[3]

Teixeira da Silva JA, Winarto B. 2016. Somatic embryogenesis in two orchid genera (Cymbidium, Dendrobium). Methods in Molecular Biology 1359:86

doi: 10.1007/978-1-4939-3061-6_18
[4]

Li C, Dong N, Zhao Y, Wu S, Liu Z, et al. 2021. A review for the breeding of orchids: current achievements and prospects. Horticultural Plant Journal 7:380−92

doi: 10.1016/j.hpj.2021.02.006
[5]

Lin W, Li Y, Liang J, Liu Y, Chen P, et al. 2024. Establishment of Dendrobium wilsonii Rolfe in vitro regeneration system. Scientia Horticulturae 324:112598

doi: 10.1016/j.scienta.2023.112598
[6]

Malik ANA, Uddain J, Chin CK, Chew BL, Subramaniam S. 2021. Elicitation of protocorm-like bodies (PLBs) of Dendrobium 'Sabin Blue' using methyl jasmonate, salicylic acid and melatonin for in vitro production of anthocyanin. Phytochemistry Letters 43:60−64

doi: 10.1016/j.phytol.2021.03.008
[7]

Zeng D, Si C, Zhang M, Duan J, He C. 2023. ERF5 enhances protocorm-like body regeneration via enhancement of STM expression in Dendrobium orchid. Journal of Integrative Plant Biology 65:2071

doi: 10.1111/jipb.13534
[8]

Shahzad A, Sharma S, Siddiqui SA. 2016. Somatic embryogenesis: a valuable strategy for phyto-climbing diversity conservation. In Biotechnological strategies for the conservation of medicinal and ornamental climbers, eds. Shahzad A, Sharma S, Siddiqui S. Cham: Springer. pp. 195−216. doi: 10.1007/978-3-319-19288-8

[9]

Teixeira da Silva JA, Chin DP, Van PT, Mii M. 2011. Transgenic orchids. Scientia Horticulturae 130:673−80

doi: 10.1016/j.scienta.2011.08.025
[10]

Chen JT, Chang WC. 2006. Direct somatic embryogenesis and plant regeneration from leaf explants of Phalaenopsis amabilis. Biologia plantarum 50:169−73

doi: 10.1007/s10535-006-0002-8
[11]

Fang H, Zuo J, Ma Q, Zhang X, Xu Y, et al. 2024. Phytosulfokine promotes fruit ripening and quality via phosphorylation of transcription factor DREB2F in tomato. Plant Physiology 194:2739−54

doi: 10.1093/plphys/kiae012
[12]

Reichardt S, Piepho HP, Stintzi A, Schaller A. 2020. Peptide signaling for drought-induced tomato flower drop. Science 367:1482−85

doi: 10.1126/science.aaz5641
[13]

Hao Z, Wu H, Zheng R, Li R, Zhu Z, et al. 2023. The plant peptide hormone phytosulfokine promotes somatic embryogenesis by maintaining redox homeostasis in Cunninghamia lanceolata. The Plant Journal 113:716−33

doi: 10.1111/tpj.16077
[14]

Liu CL, Deng JM, Peng S, Huang HY, Xu FR. 2025. Establishment of an efficient in vitro regeneration protocol for Dendrobium primulinum Lindl. by one-step seedling formation. In Vitro Cellular & Developmental Biology - Plant Latest article

doi: 10.1007/s11627-025-10535-3
[15]

Sun ZX, Song YY, Zeng RS. 2019. Advances in studies on intraspecific and interspecific relationships mediated by plant volatiles. Journal of South China Agricultural University 40:166−74 (in Chinese)

[16]

Fan JR, Li YY, Yang L, Chen C. 2016. Study on influencing factors for induction and proliferation of protocorm-like bodies of Dendrobium officinale. Journal of Chinese Medicinal Materials 39(1):6−10 (in Chinese)

doi: 10.13863/j.issn1001-4454.2016.01.002
[17]

Yeung EC. 2017. A perspective on orchid seed and protocorm development. Botanical Studies 58:33

doi: 10.1186/s40529-017-0188-4
[18]

Wu C, Munir R, Li F, Li P, Cai Y, Shi K. 2025. From biosynthesis to signaling: unveiling the multifaceted roles of phytosulfokine peptide in plants. Journal of Experimental Botany 00:230

doi: 10.1093/jxb/eraf230
[19]

Li Y Di Q, Luo L, Yu L. 2024. Phytosulfokine peptides, their receptors, and functions. Frontiers in Plant Science 14:1326964

doi: 10.3389/fpls.2023.1326964
[20]

Matsubayashi Y. 2011. Small post-translationally modified Peptide signals in Arabidopsis. The Arabidopsis Book 9:e0150

doi: 10.1199/tab.0150