[1]

McCallum EJ, Anjanappa RB, Gruissem. 2017. Tackling agriculturally relevant diseases in the staple crop cassava (Manihot esculenta). Current Opinion in Plant Biology 38:50−58

doi: 10.1016/j.pbi.2017.04.008
[2]

Kumar R, Kumar A, Sinha S. 2022. Natural and engineered resistance: implications for managing the cassava mosaic disease. In Geminivirus: Detection, Diagnosis and Management, eds Gaur RK, Sharma P, Czosnek H. US: Academic Press. pp. 531−48. doi: 10.1016/B978-0-323-90587-9.00042-0

[3]

FAOSTAT. FAOSTAT data. 2024. www.fao.org/faostat/en/#data

[4]

Balat M, Balat H. 2009. Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy 86:2273−82

doi: 10.1016/j.apenergy.2009.03.015
[5]

Daniel Lin ZJ, Taylor NJ, Bart R. 2019. Engineering disease-resistant cassava. Cold Spring Harbor Perspectives in Biology 11:a034595

doi: 10.1101/cshperspect.a034595
[6]

Lim SJ, Rosario K, Kernbach ME, Gross AJ, Furman BT, et al. 2024. Limited potexvirus diversity in eastern Gulf of Mexico seagrass meadows. The Journal of General Virology 105:002004

doi: 10.1099/jgv.0.002004
[7]

Calvert LA, Cuervo MI, Ospina MD, Fauquet CM, Ramirez BC. 1996. Characterization of cassava common mosaic virus and a defective RNA species. The Journal of General Virology 77:525−30

doi: 10.1099/0022-1317-77-3-525
[8]

Nolt BL, Pineda López B, Velasco AC. 1986. Avances sobre identificación, detección y manejo de los virus de la yuca en América Latina. Alliance Bioversity & Ciat 11:268−69

[9]

Carvajal-Yepes M, Olaya C, Lozano I, Cuervo M, Castaño M, et al. 2014. Unraveling complex viral infections in cassava (Manihot esculenta Crantz) from Colombia. Virus Research 186:76−86

doi: 10.1016/j.virusres.2013.12.011
[10]

De Albuquerque GR, dos Santos JACM, de Jesus Boari A, Cunha EFM, Pantoj KFC, et al. 2023. First report of cassava virus X infecting cassava plants in Brazil. Journal of Plant Pathology 105:1669−74

doi: 10.1007/s42161-023-01499-7
[11]

Pineda B, Lozano J, Jayasinghe U, Upali W. 1982. El mosaico caribeño de la yuca (Manihot esclenta Crantz). ASCOLFI 5:6

[12]

Pineda López B, Nolt B. 2018. Reconocimiento de enfermedades virales en el cultivo de la yuca en la Costa Norte. AGRIS, FAO

[13]

Lennon A, Aiton M, Harrison B. 1986. Cassava viruses from South America. Annual Report 167

[14]

Aiton M, Harrison B. 1988. Cassava Colombian symptomless virus (CCSV). Annual Report 192

[15]

Lozano I, Leiva AM, Jimenez J, Fernandez E, Carvajal-Yepes M, et al. 2017. Resolution of cassava-infecting alphaflexiviruses: molecular and biological characterization of a novel group of potexviruses lacking the TGB3 gene. Virus Research 241:53−61

doi: 10.1016/j.virusres.2017.03.019
[16]

Leshchiner AD, Minina EA, Rakitina DV, Vishnichenko VK, Solovyev AG, et al. 2008. Oligomerization of the potato virus X 25-kD movement protein. Biochemistry 73:50−55

doi: 10.1134/S0006297908010070
[17]

ICTV. ICTV virus taxonomy profiles. 2023. www.microbiologyresearch.org/content/ictv-virus-taxonomy-profiles

[18]

Nolt BL, Pineda LB, Velasco AC. 1992. Surveys of cassava plantations in Colombia for virus and virus-like diseases. Plant Pathology 41:348−54

doi: 10.1111/j.1365-3059.1992.tb02357.x
[19]

Nolt BL, Velasco AC, Pineda B. 1991. Improved purification procedure and some serological and physica properties of cassava common mosaic virus from South America. Annals of Applied Biology 118:105−13

doi: 10.1111/j.1744-7348.1991.tb06089.x
[20]

Pardo JM, Alvarez E, Becerra Lopez-Lavalle LA, Olaya C, Leiva AM, et al. 2022. Cassava frogskin disease: current knowledge on a re-emerging disease in the Americas. Plants 11:1841

doi: 10.3390/plants11141841
[21]

Legg J, Somado EA, Barker I, Beach L, Ceballos H, et al. 2014. A global alliance declaring war on cassava viruses in Africa. Food Security 6:231−48

doi: 10.1007/s12571-014-0340-x
[22]

Alabi OJ, Mulenga RM, Legg JP. 2015. Cassava mosaic. In Virus Diseases of Tropical and Subtropical Crops, eds Tennant P, Fermin G. UK: CABI. pp. 56−72 doi: 10.1079/9781780644264.0056

[23]

Wang D, Huang G, Shi T, Wang G, Fang R, et al. 2020. Surveillance and distribution of the emergent Sri Lankan cassava mosaic virus in China. Phytopathology Research 2:18

doi: 10.1186/s42483-020-00063-w
[24]

Silva JM, Carnelossi PR, Bijora T, Facco CU, Picoli MHS, et al. 2011. Immunocapture-RT-PCR detection of Cassava common mosaic virus in cassava obtained from meristem-tip culture in Paraná state. Tropical Plant Pathology 36:271−75

doi: 10.1590/S1982-56762011000500001
[25]

Tuo DC, Zhao GY, Yan P, Li RM, Chen X, et al. 2020. First report of Cassava common mosaic virus infecting cassava in mainland China. Plant Disease 104:997

doi: 10.1094/PDIS-08-19-1585-PDN
[26]

Colariccio A, Rivas EB, Bonfim MF Jr, Peruch LAM. 2021. Ocorrência do Cassava Common Mosaic Vírus (CsCMV) e Cassava Vein Mosia Vírus (CsVMV) em cultivares de mandioca em Santa Catarina, Brasil. Biológico 82:1−9

doi: 10.31368/1980-6221v82a10001
[27]

Collavino A, Zanini AA, Medina R, Schaller S, Di Feo L. 2022. Cassava common mosaic virus infection affects growth and yield components of cassava plants (Manihot esculenta) in Argentina. Plant Pathology 71:980−89

doi: 10.1111/ppa.13515
[28]

Venturini MT, da Silva Araújo T, Abreu EFM, de Andrade EC, da Silva Santos V, et al. 2016. Crop losses in Brazilian cassava varieties induced by the Cassava common mosaic virus. Scientia Agricola 73:520−24

doi: 10.1590/0103-9016-2015-0374
[29]

Kreuze JF, Vaira AM, Menzel W, Candresse T, Zavriev SK, et al. 2020. ICTV virus taxonomy profile: Alphaflexiviridae. Journal of General Virology 101:699−700

doi: 10.1099/jgv.0.001436
[30]

Lim HS, Bragg JN, Ganesan U, Lawrence DM, Yu J, et al. 2008. Triple gene block protein interactions involved in movement of Barley Stripe Mosaic Virus. Journal of Virology 82:4991−5006

doi: 10.1128/jvi.02586-07
[31]

Morozov SY, Solovyev AG. 2003. Triple gene block: modular design of a multifunctional machine for plant virus movement. Journal of General Virology 84:1351−66

doi: 10.1099/vir.0.18922-0
[32]

Verchot-Lubicz J, Torrance L, Solovyev AG, Morozov SY, Jackson AO, et al. 2010. Varied movement strategies employed by triple gene block-encoding viruses. Molecular Plant-Microbe Interactions 23:1231−47

doi: 10.1094/MPMI-04-10-0086
[33]

Kadaré G, Haenni AL. 1997. Virus-encoded RNA helicases. Journal of Virology 71:2583−90

doi: 10.1128/JVI.71.4.2583-2590.1997
[34]

Voinnet O, Lederer C, Baulcombe DC. 2016. A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 166:780

doi: 10.1016/j.cell.2016.07.015
[35]

Senshu H, Ozeki J, Komatsu K, Hashimoto M, Hatada K, et al. 2009. Variability in the level of RNA silencing suppression caused by triple gene block protein 1 (TGBp1) from various potexviruses during infection. Journal of General Virology 90:1014−24

doi: 10.1099/vir.0.008243-0
[36]

Ju HJ, Samuels TD, Wang YS, Blancaflor E, Payton M, et al. 2005. The potato virus X TGBp2 movement protein associates with endoplasmic reticulum-derived vesicles during virus infection. Plant Physiology 138:1877−95

doi: 10.1104/pp.105.066019
[37]

Schepetilnikov MV, Manske U, Solovyev AG, Zamyatnin AA, Schiemann J, et al. 2005. The hydrophobic segment of Potato virus X TGBp3 is a major determinant of the protein intracellular trafficking. Journal of General Virology 86:2379−91

doi: 10.1099/vir.0.80865-0
[38]

Chou YL, Hung YJ, Tseng YH, Hsu HT, Yang JY, et al. 2013. The stable association of virion with the triple-gene-block protein 3-based complex of Bamboo mosaic virus. PLoS Pathogens 9:e1003405

doi: 10.1371/journal.ppat.1003405
[39]

Park MR, Jeong RD, Kim KH. 2014. Understanding the intracellular trafficking and intercellular transport of potexviruses in their host plants. Frontiers in Plant Science 5:60

doi: 10.3389/fpls.2014.00060
[40]

Cruz SS, Roberts AG, Prior DAM, Chapman S, Oparka KJ. 1998. Cell-to-cell and phloem-mediated transport of potato virus X: the role of virions. The Plant Cell 10:495−510

doi: 10.1105/tpc.10.4.495
[41]

Di Feo L, Zanini A, Rodríguez Pardina P, Cuervo M, Carvajal-Yepes M, et al. 2015. First report of Cassava common mosaic virus and Cassava frogskin-associated virus infecting cassava in Argentina. Plant Disease 99:733

doi: 10.1094/PDIS-10-14-1088-PDN
[42]

Zanini AA, Cuellar WJ, Celli MG, Luque AV, Medina RD, et al. 2018. Distinct strains of the re-emergent Cassava common mosaic virus (Genus: Potexvirus) infecting cassava in Argentina. Plant Pathology 67:1814−20

doi: 10.1111/ppa.12869
[43]

Marys E, Izaguirre-mayoral ML. 1995. Isolation and characterisation of a new Venezuelan strain of cassava common mosaic virus. Annals of Applied Biology 127:105−12

doi: 10.1111/j.1744-7348.1995.tb06655.x
[44]

Fernández E, Espinoza I, Lozano I, Bolaños C, Carvajal-Yepes M, et al. 2017. First report of Cassava common mosaic disease and Cassava common mosaic virus infecting cassava (Manihot esculenta) in Peru. Plant Disease 101:1066−66

doi: 10.1094/PDIS-10-16-1540-PDN
[45]

Elliott MS, Zattler FW. 1987. Cassava common mosaic virus infections of Chaya (Cnidoscolus aconitifolius) in Yucatan, Mexico. Plant Disease 71:353

doi: 10.1094/PD-71-0353
[46]

Mejías A, Rodríguez-Román E, Romano M, Zambrano K, Marys E. 2015. New record of Cassava common mosaic virus infecting Chaya (Cnidoscolus chayamansa McVaug) in Venezuela. Plant Disease 99:1190

doi: 10.1094/PDIS-02-15-0132-PDN
[47]

Jones P, Devonshire J, Dabek A, Howells C. 1998. First report of Cassava common mosaic potexvirus infecting Chaya (Cnidoscolus chayamansa) in Tuvalu. Plant Disease 82:591

doi: 10.1094/PDIS.1998.82.5.591B
[48]

Montero-Astúa M, Sandoval-Carvajal I, Moreira-Carmona L, Villalobos-Muller W, Garita-Salazar L, et al. 2023. Phytopathology and cultural behaviors: putative introduction of Chaya-strain of Cassava common mosaic virus to Costa Rica. Mexican Journal of Phytopathology 41:7

doi: 10.18781/R.MEX.FIT.2023-3
[49]

Zettler FW, Elliott MS. 1986. An antigenically distinct strain of cassava common mosaic virus infecting Cnidoscolus aconitifolius. Phytopathology 76:632−38

doi: 10.1094/phyto-76-632
[50]

Aiton M, Roberts I, Harrison B. 1988. Cassava common mosaic potexvirus from mosaic-affected cassava in the Ivory Coast. Report of the Scottish Crop Research Institute for 1987. 191 pp

[51]

Calvert LA, Thresh JM. 2002. The viruses and virus diseases of cassava. Cassava: Biology, Production and Utilization, eds Hillocks RJ, Thresh JM. UK: CABI. pp. 237−60. doi: 10.1079/9780851995243.0237

[52]

Kitajima EW, Wetter C, Oliveira AR, Silva DM, Costa AS. 1965. Morfologia do vírus do mosaico comum da mandioca. Bragantia 24:247−60

doi: 10.1590/S0006-87051965000100021
[53]

Ospina B, Ceballos H. 2012. Cassava in the third millennium: modern production, processing, use, and marketing systems. UK: CABI. doi: 10.5555/20220274746

[54]

Legg JP, Lava Kumar P, Makeshkumar T, Tripathi L, Ferguson M, et al. 2015. Cassava virus diseases: biology, epidemiology, and management. Advances in Virus Research 91:85−142

doi: 10.1016/bs.aivir.2014.10.001
[55]

Martinez-Lopez G. 1978. American virus and mycoplasma diseases of cassava. Proceedings of the Cassava Protection Workshop, CIAT, Cali, Colombia, 1977. pp. 85−93

[56]

Watanabe LFM, Ribeiro MR Junior, Portilho AMN, Marubayashi JM, Barreto da Silva F, et al. 2024. High incidence of cassava common mosaic virus in cassava plants and complete genome sequence of a distinct isolate from Brazil. Tropical Plant Pathology 49:943−48

doi: 10.1007/s40858-024-00679-9
[57]

Yu NT, Yang Y, Li JH, Li WL, Liu ZX. 2020. Complete genome sequence of a distinct isolate of cassava common mosaic virus (CsCMV) infecting cassava in Hainan, China. European Journal of Plant Pathology 158:583−87

doi: 10.1007/s10658-020-02088-5
[58]

Zanini AA, Dominguez MC, Rodríguez MS. 2025. Exploring sugar allocation and metabolic shifts in cassava plants infected with Cassava common mosaic virus (CsCMV) under long-day photoperiod: diel changes in source and sink leaves. Journal of Plant Research 138:131−45

doi: 10.1007/s10265-024-01595-4
[59]

Zanini AA, Di Feo L, Luna DF, Paccioretti P, Collavino A, et al. 2021. Cassava common mosaic virus infection causes alterations in chloroplast ultrastructure, function, and carbohydrate metabolism of cassava plants. Plant Pathology 70:195−205

doi: 10.1111/ppa.13272
[60]

Niño-Jimenez DP, López-López K, Cuervo-Ibáñez M. 2024. Quantitative detection of cassava common mosaic virus for health certification of cassava (Manihot esculenta Crantz) germplasm using qPCR analysis. Heliyon 10:e27604

doi: 10.1016/j.heliyon.2024.e27604
[61]

Lezzhov AA, Gushchin VA, Lazareva EA, Vishnichenko VK, Morozov SY, et al. 2015. Translation of the shallot virus X TGB3 gene depends on non-AUG initiation and leaky scanning. Journal of General Virology 96:3159−64

doi: 10.1099/jgv.0.000248
[62]

Martelli GP, Adams MJ, Kreuze JF, Dolja VV. 2007. Family Flexiviridae: a case study in virion and genome plasticity. Annual Review of Phytopathology 45:73−100

doi: 10.1146/annurev.phyto.45.062806.094401
[63]

Morozov SY, Solovyev AG. 2015. Phylogenetic relationship of some "accessory" helicases of plant positive-stranded RNA viruses: toward understanding the evolution of triple gene block. Frontiers in Microbiology 6:508

doi: 10.3389/fmicb.2015.00508
[64]

Wei Y, Xie H, Xu L, Cheng X, Zhu B, et al. 2024. Coat protein of cassava common mosaic virus targets RAV1 and RAV2 transcription factors to subvert immunity in cassava. Plant Physiology 194:1218−32

doi: 10.1093/plphys/kiad569
[65]

Tuo D, Yao Y, Yan P, Chen X, Qu F, et al. 2023. Development of cassava common mosaic virus-based vector for protein expression and gene editing in cassava. Plant Methods 19:78

doi: 10.1186/s13007-023-01055-5
[66]

Tuo D, Zhou P, Yan P, Cui H, Liu Y, et al. 2021. A cassava common mosaic virus vector for virus-induced gene silencing in cassava. Plant Methods 17:74

doi: 10.1186/s13007-021-00775-w
[67]

Mei Y, Beernink BM, Ellison EE, Konečná E, Neelakandan AK, et al. 2019. Protein expression and gene editing in monocots using foxtail mosaic virus vectors. Plant Direct 3:e00181

doi: 10.1002/pld3.181
[68]

Bojko J, Burgess AL, Allain TW, Ross EP, Pharo D, et al. 2022. Pathology and genetic connectedness of the mangrove crab (Aratus pisonii) – a foundation for understanding mangrove disease ecology. Animal Diseases 2:8

doi: 10.1186/s44149-022-00039-7