[1]

Doležel J, Bartoš J. 2005. Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany 95:99−110

doi: 10.1093/aob/mci005
[2]

Pellicer J, Leitch IJ. 2020. The Plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytologist 226:301−5

doi: 10.1111/nph.16261
[3]

Fujiwara T, Liu H, Meza-Torres EI, Morero RE, Vega AJ, et al. 2023. Evolution of genome space occupation in ferns: linking genome diversity and species richness. Annals of Botany 131:59−70

doi: 10.1093/aob/mcab094
[4]

Símová I, Herben T. 2012. Geometrical constraints in the scaling relationships between genome size, cell size and cell cycle length in herbaceous plants. Proceedings Of The Royal Society B-biological Sciences 279:867−75

doi: 10.1098/rspb.2011.1284
[5]

Te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, et al. 2012. The more the better? The role of polyploidy in facilitating plant invasions. Annals of Botany 109:19−45

doi: 10.1093/aob/mcr277
[6]

Morgan HD, Westoby M. 2005. The relationship between nuclear DNA content and leaf strategy in seed plants. Annals of Botany 96:1321−30

doi: 10.1093/aob/mci284
[7]

Guignard MS, Nichols RA, Knell RJ, Macdonald A, Romila CA, et al. 2016. Genome size and ploidy influence angiosperm species' biomass under nitrogen and phosphorus limitation. New Phytologist 210:1195−206

doi: 10.1111/nph.13881
[8]

Landis JB, Soltis DE, Li Z, Marx HE, Barker MS, et al. 2018. Impact of whole-genome duplication events on diversification rates in angiosperms. American Journal of Botany 105:348−63

doi: 10.1002/ajb2.1060
[9]

Flatt T. 2020. Life-history evolution and the genetics of fitness components in Drosophila melanogaster. Genetics 214:3−48

doi: 10.1534/genetics.119.300160
[10]

Mackay TFC, Anholt RRH. 2024. Pleiotropy, epistasis and the genetic architecture of quantitative traits. Nature Reviews Genetics 25:639−57

doi: 10.1038/s41576-024-00711-3
[11]

Beaulieu JM, Leitch IJ, Knight CA. 2007. Genome size evolution in relation to leaf strategy and metabolic rates revisited. Annals of Botany 99:495−505

doi: 10.1093/aob/mcl271
[12]

Knight CA, Molinari NA, Petrov DA. 2005. The large genome constraint hypothesis: Evolution, ecology and phenotype. Annals of Botany 95:177−90

doi: 10.1093/aob/mci011
[13]

Liu T, Sun K, Csorba G, Zhang K, Zhang L, et al. 2019. Species delimitation and evolutionary reconstruction within an integrative taxonomic framework: a case study on Rhinolophus macrotis complex (Chiroptera: Rhinolophidae). Molecular Phylogenetics and Evolution 139:106544

doi: 10.1016/j.ympev.2019.106544
[14]

Michael TP. 2014. Plant genome size variation: bloating and purging DNA. Briefings In Functional Genomics 13:308−17

doi: 10.1093/bfgp/elu005
[15]

Schley RJ, Pellicer J, Ge XJ, Barrett C, Bellot S, et al. 2022. The ecology of palm genomes: repeat-associated genome size expansion is constrained by aridity. New Phytologist 236:433−46

doi: 10.1111/nph.18323
[16]

Yuan H, Liu XJ, Liu XZ, Zhao LN, Mao SL, et al. 2024. The evolutionary dynamics of genome sizes and repetitive elements in Ensifera (Insecta: Orthoptera). BMC Genomics 25:1041

doi: 10.1186/s12864-024-10949-0
[17]

Faizullah L, Morton JA, Hersch-Green EI, Walczyk AM, Leitch AR, et al. 2021. Exploring environmental selection on genome size in angiosperms. Trends in Plant Science 26:1039−49

doi: 10.1016/j.tplants.2021.06.001
[18]

Mei W, Stetter MG, Gates DJ, Stitzer MC, Ross-Ibarra J. 2018. Adaptation in plant genomes: Bigger is different. The American Journal of Botany 105:16−9

doi: 10.1002/ajb2.1002
[19]

Tyagi A, Sandhya, Sharma P, Saxena S, Sharma R, et al. 2019. The genome size of clusterbean (Cyamopsis tetragonoloba) is significantly smaller compared to its wild relatives as estimated by flow cytometry. Gene 707:205−11

doi: 10.1016/j.gene.2019.02.090
[20]

Chen B, Sun Z, Lou F, Gao TX, Song N. 2020. Genomic characteristics and profile of microsatellite primers for Acanthogobius ommaturus by genome survey sequencing. Bioscience Reports 40:BSR20201295

doi: 10.1042/BSR20201295
[21]

Hardie DC, Gregory TR, Hebert PDN. 2002. From pixels to picograms: a beginners' guide to genome quantification by Feulgen image analysis densitometry. Journal of Histochemistry and Cytochemistry 50:735−49

doi: 10.1177/002215540205000601
[22]

Wilhelm J, Pingoud A, Hahn M. 2003. Real-time PCR-based method for the estimation of genome sizes. Nucleic Acids Research 31:e56

doi: 10.1093/nar/gng056
[23]

Bennett MD, Price HJ, Johnston JS. 2008. Anthocyanin inhibits propidium iodide DNA fluorescence in Euphorbia pulcherrima: implications for genome size variation and flow cytometry. Annals of Botany 101:777−90

doi: 10.1093/aob/mcm303
[24]

Hesse U. 2023. K-mer-based genome size estimation in theory and practice. Methods in Molecular Biology 2672:79−113

doi: 10.1007/978-1-0716-3226-0_4
[25]

Doležel J, Čížková J, Šimková H, Bartoš J. 2018. One major challenge of sequencing large plant genomes is to know how big they really are. International Journal of Molecular Sciences 19:3554

doi: 10.3390/ijms19113554
[26]

De Coster W, Weissensteiner MH, Sedlazeck FJ. 2021. Towards population-scale long-read sequencing. Nature Reviews Genetics 22:572−87

doi: 10.1038/s41576-021-00367-3
[27]

Doležel J, Greilhuber J, Suda J. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols 2:2233−44

doi: 10.1038/nprot.2007.310
[28]

Jourdan ML, Ferrero-Poüs M, Spyratos F, Romain S, Martin PM, et al. 2002. Flow cytometric S-phase fraction measurement in breast carcinoma: influence of software and histogram resolution. Cytometry: Part A 48:66−70

doi: 10.1002/cyto.10116
[29]

Hahn MW, De Bie T, Stajich JE, Nguyen C, Cristianini N. 2005. Estimating the tempo and mode of gene family evolution from comparative genomic data. Genome Research 15:1153−60

doi: 10.1101/gr.3567505
[30]

Pflug JM, Holmes VR, Burrus C, Johnston JS, Maddison DR. 2020. Measuring genome sizes using read-depth, k-mers, and flow cytometry: methodological comparisons in beetles (Coleoptera). G3 Genes|Genomes|Genetics 10:3047−60

doi: 10.1534/g3.120.401028
[31]

Guo LT, Wang SL, Wu QJ, Zhou XG, Xie W, et al. 2015. Flow cytometry and K-mer analysis estimates of the genome sizes of Bemisia tabaci B and Q (Hemiptera: Aleyrodidae). Frontiers in Physiology 6:144

doi: 10.3389/fphys.2015.00144
[32]

Dai SF, Zhu XG, Hutang GR, Li JY, Tian JQ, et al. 2022. Genome size variation and evolution driven by transposable elements in the genus oryza. Frontiers in Plant Science 7:921937

doi: 10.3389/fpls.2022.921937
[33]

Al-Qurainy F, Gaafar AZ, Khan S, Nadeem M, Alshameri AM, et al. 2021. Estimation of genome size in the endemic species Reseda pentagyna and the locally rare species reseda lutea using comparative analyses of flow cytometry and K-mer approaches. Plants 10:1362

doi: 10.3390/plants10071362
[34]

Meng HH, Zhang CY, Song YG, Yu XQ, Cao GL, et al. 2022. Opening a door to the spatiotemporal history of plants from the tropical Indochina Peninsula to subtropical China. Molecular Phylogenetics and Evolution 171:107458

doi: 10.1016/j.ympev.2022.107458
[35]

Zhang CY, Ling Low S, Song YG, Nurainas, Kozlowski G, et al. 2020. Shining a light on species delimitation in the tree genus Engelhardia Leschenault ex Blume (Juglandaceae). Molecular Phylogenetics and Evolution 152:106918

doi: 10.1016/j.ympev.2020.106918
[36]

Meng HH, Zhang CY, Low SL, Li L, Shen JY, et al. 2022. Two new species from Sulawesi and Borneo facilitate phylogeny and taxonomic revision of Engelhardia (Juglandaceae). Plant Diversity 44:552−564

doi: 10.1016/j.pld.2022.08.003
[37]

Luo R, Liu B, Xie Y, Li Z, Huang W, et al. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1(1):2047-217X-1-18

doi: 10.1186/2047-217X-1-18
[38]

Moeckel C, Mareboina M, Konnaris MA, Chan CSY, Mouratidis I, et al. 2024. A survey of K-mer methods and applications in bioinformatics. Computational and Structural Biotechnology Journal 23:2289−303

doi: 10.1016/j.csbj.2024.05.025
[39]

Ranallo - Benavidez TR, Jaron KS, Schatz MC. 2020. GenomeScope 2.0 and Smudgeplot for reference - free profiling of polyploid genomes. Nature Communications 11:1432

doi: 10.1038/s41467-020-14998-3
[40]

Valdebenito - Maturana B, Riadi G. 2021. GSER (a Genome Size Estimator using R): a pipeline for quality assessment of sequenced genome libraries through genome size estimation. Interface Focus 11:20200077

doi: 10.1098/rsfs.2020.0077
[41]

Ding YM, Pang XX, Cao Y, Zhang WP, Renner SS, et al. 2023. Genome structure-based Juglandaceae phylogenies contradict alignment-based phylogenies and substitution rates vary with DNA repair genes. Nature Communications 14:617

doi: 10.1038/s41467-023-36247-z
[42]

Sun H, Ding J, Piednoël M, Schneeberger K. 2018. findGSE: estimating genome size variation within human and Arabidopsis using k-mer frequencies. Bioinformatics 34:550−57

doi: 10.1093/bioinformatics/btx637
[43]

Marçais G, Kingsford C. 2011. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27:764−70

doi: 10.1093/bioinformatics/btr011
[44]

Mehrab Z, Mobin J, Tahmid IA, Rahman A. 2021. Efficient association mapping from K-mers: an application in finding sex-specific sequences. PLoS One 16:e0245058

doi: 10.1371/journal.pone.0245058
[45]

Kurtz S, Narechania A, Stein JC, Ware D. 2008. A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes. BMC Genomics 9:517

doi: 10.1186/1471-2164-9-517
[46]

Liao X, Zhu W, Liu C. 2024. A high-precision genome size estimator based on the k-mer histogram correction. Frontiers In Genetics 15:1451730

doi: 10.3389/fgene.2024.1451730
[47]

Shaw J, Yu YW. 2022. Theory of local k-mer selection with applications to long-read alignment. Bioinformatics 38:4659−69

doi: 10.1093/bioinformatics/btab790