[1]

Zhao Q, Dixon RA. 2011. Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends in Plant Science 16:227−33

doi: 10.1016/j.tplants.2010.12.005
[2]

Wilson TE, Fahrner TJ, Johnston M, Milbrandt J. 1991. Identification of the DNA binding site for NGFI-B by genetic selection in yeast. Science 252(5010):1296−300

doi: 10.1126/science.1925541
[3]

Hellman LM, Fried MG. 2007. Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions. Nature Protocols 2:1849−61

doi: 10.1038/nprot.2007.249
[4]

Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, et al. 2007. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nature Methods 4:651−57

doi: 10.1038/nmeth1068
[5]

Bartlett A, O'Malley RC, Huang SC, Galli M, Nery JR, et al. 2017. Mapping genome-wide transcription-factor binding sites using DAP-seq. Nature Protocols 12:1659−72

doi: 10.1038/nprot.2017.055
[6]

Nie J, Stewart R, Zhang H, Thomson JA, Ruan F, et al. 2011. TF-Cluster: a pipeline for identifying functionally coordinated transcription factors via network decomposition of the shared coexpression connectivity matrix (SCCM). BMC Systems Biology 5:53

doi: 10.1186/1752-0509-5-53
[7]

Kumari S, Deng W, Gunasekara C, Chiang V, Chen HS, et al. 2016. Bottom-up GGM algorithm for constructing multilayered hierarchical gene regulatory networks that govern biological pathways or processes. BMC Bioinformatics 17:132

doi: 10.1186/s12859-016-0981-1
[8]

Wei H. 2019. Construction of a hierarchical gene regulatory network centered around a transcription factor. Briefings in Bioinformatics 20:1021−31

doi: 10.1093/bib/bbx152
[9]

Deng W, Zhang K, Busov V, Wei H. 2017. Recursive random forest algorithm for constructing multilayered hierarchical gene regulatory networks that govern biological pathways. PLoS One 12:e0171532

doi: 10.1371/journal.pone.0171532
[10]

Haury AC, Mordelet F, Vera-Licona P, Vert JP. 2012. TIGRESS trustful inference of gene REgulation using stability selection. BMC Systems Biology 6:145

doi: 10.1186/1752-0509-6-145
[11]

Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, et al. 2006. ARACNE an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7:S7

doi: 10.1186/1471-2105-7-S1-S7
[12]

Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, et al. 2007. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biology 5:e8

doi: 10.1371/journal.pbio.0050008
[13]

Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. 2010. Inferring regulatory networks from expression data using tree-based methods. PLoS One 5:e12776

doi: 10.1371/journal.pone.0012776
[14]

Deng W, Zhang K, Liu S, Zhao PX, Xu S, et al. 2018. JRmGRN: joint reconstruction of multiple gene regulatory networks with common hub genes using data from multiple tissues or conditions. Bioinformatics 34:3470−78

doi: 10.1093/bioinformatics/bty354
[15]

Danaher P, Wang P, Witten DM. 2014. The joint graphical lasso for inverse covariance estimation across multiple classes. Journal of the Royal Statistical Society Series B, Statistical Methodology 76:373−97

doi: 10.1111/rssb.12033
[16]

Cao X, Zhang L, Islam MK, Zhao M, He C, et al. 2023. TGPred: efficient methods for predicting target genes of a transcription factor by integrating statistics, machine learning and optimization. NAR Genomics and Bioinformatics 5:lqad083

doi: 10.1093/nargab/lqad083
[17]

Tabares-Soto R, Orozco-Arias S, Romero-Cano V, Segovia Bucheli V, Rodríguez-Sotelo JL, et al. 2020. A comparative study of machine learning and deep learning algorithms to classify cancer types based on microarray gene expression data. PeerJ Computer Science 6:e270

doi: 10.7717/peerj-cs.270
[18]

Angermueller C, Pärnamaa T, Parts L, Stegle O. 2016. Deep learning for computational biology. Molecular Systems Biology 12:878

doi: 10.15252/msb.20156651
[19]

Rukhsar L, Bangyal WH, Ali Khan MS, Ag Ibrahim AA, Nisar K, et al. 2022. Analyzing RNA-seq gene expression data using deep learning approaches for cancer classification. Applied Sciences 12:1850

doi: 10.3390/app12041850
[20]

Eetemadi A, Tagkopoulos I. 2019. Genetic Neural Networks: an artificial neural network architecture for capturing gene expression relationships. Bioinformatics 35:2226−34

doi: 10.1093/bioinformatics/bty945
[21]

Alipanahi B, Delong A, Weirauch MT, Frey BJ. 2015. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnology 33:831−38

doi: 10.1038/nbt.3300
[22]

Hassanzadeh HR, Wang MD. 2016. DeeperBind: enhancing prediction of sequence specificities of DNA binding proteins. 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Shenzhen, China, 2016. US: IEEE. pp. 178−83. doi: 10.1109/BIBM.2016.7822515

[23]

Zhou J, Troyanskaya OG. 2015. Predicting effects of noncoding variants with deep learning-based sequence model. Nature Methods 12:931−34

doi: 10.1038/nmeth.3547
[24]

Min S, Lee B, Yoon S. 2017. Deep learning in bioinformatics. Briefings in Bioinformatics 18:851−69

doi: 10.1093/bib/bbw068
[25]

Salleh FHM, Zainudin S, Arif SM. 2017. Multiple linear regression for reconstruction of gene regulatory networks in solving cascade error problems. Advances in Bioinformatics 2017:4827171

doi: 10.1155/2017/4827171
[26]

Gillani Z, Akash MSH, Matiur Rahaman MD, Chen M. 2014. CompareSVM: supervised, Support Vector Machine (SVM) inference of gene regularity networks. BMC Bioinformatics 15:395

doi: 10.1186/s12859-014-0395-x
[27]

Huynh-Thu VA, Geurts P. 2019. Unsupervised gene network inference with decision trees and random forests. Methods in Molecular Biology 1883:195−215

doi: 10.1007/978-1-4939-8882-2_8
[28]

Shook J, Gangopadhyay T, Wu L, Ganapathysubramanian B, Sarkar S, et al. 2021. Crop yield prediction integrating genotype and weather variables using deep learning. PLoS One 16:e0252402

doi: 10.1371/journal.pone.0252402
[29]

Mariappan Y, Ramasamy K, Velusamy D. 2025. An optimized deep learning based hybrid model for prediction of daily average global solar irradiance using CNN SLSTM architecture. Scientific Reports 15:10761

doi: 10.1038/s41598-025-95118-3
[30]

Wang D, Liu D, Yuchi J, He F, Jiang Y, et al. 2020. MusiteDeep: a deep-learning based webserver for protein post-translational modification site prediction and visualization. Nucleic Acids Research 48:W140−W146

doi: 10.1093/nar/gkaa275
[31]

Verma N, Ranvijay, Yadav DK. 2024. Hybrid of deep feature extraction and machine learning ensembles for imbalanced skin cancer datasets. Experimental Dermatology 33:e70020

doi: 10.1111/exd.70020
[32]

Theodoris CV, Xiao L, Chopra A, Chaffin MD, Al Sayed ZR, et al. 2023. Transfer learning enables predictions in network biology. Nature 618:616−24

doi: 10.1038/s41586-023-06139-9
[33]

Moore BM, Wang P, Fan P, Lee A, Leong B, et al. 2020. Within- and cross-species predictions of plant specialized metabolism genes using transfer learning. In Silico Plants 2:diaa005

doi: 10.1093/insilicoplants/diaa005
[34]

Pio G, Mignone P, Magazzù G, Zampieri G, Ceci M, et al. 2022. Integrating genome-scale metabolic modelling and transfer learning for human gene regulatory network reconstruction. Bioinformatics 38:487−93

doi: 10.1093/bioinformatics/btab647
[35]

Leinonen R, Sugawara H, Shumway M. 2011. The sequence read archive. Nucleic Acids Research 39:D19−D21

doi: 10.1093/nar/gkq1019
[36]

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114−20

doi: 10.1093/bioinformatics/btu170
[37]

Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. www.bioinformatics.babraham.ac.uk/projects/fastqc

[38]

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15−21

doi: 10.1093/bioinformatics/bts635
[39]

Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841−42

doi: 10.1093/bioinformatics/btq033
[40]

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139−40

doi: 10.1093/bioinformatics/btp616
[41]

Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L, et al. 2011. AGRIS the Arabidopsis gene regulatory information server, an update. Nucleic Acids Research 39:D1118−D1122

doi: 10.1093/nar/gkq1120
[42]

Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54:519−46

doi: 10.1146/annurev.arplant.54.031902.134938
[43]

Taylor-Teeples M, Lin L, de Lucas M, Turco G, Toal TW, et al. 2015. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517:571−75

doi: 10.1038/nature14099
[44]

Jochen Supper HF, Spieth C, Dräger A, Zell A. 2007. Inferring gene regulatory networks by machine learning methods. Series on Advances in Bioinformatics and Computational Biology Proceedings of the 5th Asia-Pacific Bioinformatics Conference. pp. 247−56. doi: 10.1142/9781860947995_0027

[45]

Parry RM, Jones W, Stokes TH, Phan JH, Moffitt RA, et al. 2010. K-Nearest neighbor models for microarray gene expression analysis and clinical outcome prediction. The Pharmacogenomics Journal 10:292−309

doi: 10.1038/tpj.2010.56
[46]

Choi SH, Labadorf AT, Myers RH, Lunetta KL, Dupuis J, et al. 2017. Evaluation of logistic regression models and effect of covariates for case-control study in RNA-seq analysis. BMC Bioinformatics 18:91

doi: 10.1186/s12859-017-1498-y
[47]

Peignier S, Sorin B, Calevro F. 2023. Ensemble learning based gene regulatory network inference. International Journal on Artificial Intelligence Tools 32:2360005

doi: 10.1142/S0218213023600059
[48]

Breiman L. 1996. Bagging predictors. Machine Learning 24:123−40

doi: 10.1023/A:1018054314350
[49]

Karshenas A, Röschinger T, Garcia HG. 2024. Predictive modeling of gene expression and localization of DNA binding site using deep convolutional neural networks. bioRxiv 2024.12.17.629042

doi: 10.1101/2024.12.17.629042
[50]

Ji R, Geng Y, Quan X. 2024. Inferring gene regulatory networks with graph convolutional network based on causal feature reconstruction. Scientific Reports 14:21342

doi: 10.1038/s41598-024-71864-8
[51]

Abadi M, Barham P, Chen J, Chen Z, Davis A, et al. 2016. TensorFlow: a system for large-scale machine learning. arXiv 1605.08695

doi: 10.48550/arXiv.1605.08695
[52]

Chen Y, Li Y, Narayan R, Subramanian A, Xie X. 2016. Gene expression inference with deep learning. Bioinformatics 32:1832−39

doi: 10.1093/bioinformatics/btw074
[53]

Kong Y, Yu T. 2018. A deep neural network model using random forest to extract feature representation for gene expression data classification. Scientific Reports 8:16477

doi: 10.1038/s41598-018-34833-6
[54]

He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016. US: IEEE. pp. 770−78. doi: 10.1109/CVPR.2016.90

[55]

Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, et al. 2017. MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv 1704.04861

doi: 10.48550/arXiv.1704.04861
[56]

Wang H, Zhao Q, Chen F, Wang M, Dixon RA. 2011. NAC domain function and transcriptional control of a secondary cell wall master switch. The Plant Journal 68:1104−14

doi: 10.1111/j.1365-313X.2011.04764.x
[57]

Wang H, Avci U, Nakashima J, Hahn MG, Chen F, et al. 2010. Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proceedings of the National Academy of Sciences of the United States of America 107:22338−43

doi: 10.1073/pnas.1016436107
[58]

Zhong R, Ye ZH. 2012. MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes. Plant and Cell Physiology 53:368−80

doi: 10.1093/pcp/pcr185
[59]

Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, et al. 2007. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. The Plant Cell 19(1):270−80

doi: 10.1105/tpc.106.047043
[60]

Zhou J, Zhong R, Ye ZH. 2014. Arabidopsis NAC domain proteins, VND1 to VND5, are transcriptional regulators of secondary wall biosynthesis in vessels. PLoS One 9:e105726

doi: 10.1371/journal.pone.0105726
[61]

Ohashi-Ito K, Oda Y, Fukuda H. 2010. Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation. The Plant Cell 22:3461−73

doi: 10.1105/tpc.110.075036
[62]

Yamaguchi M, Mitsuda N, Ohtani M, Ohme-Takagi M, Kato K, et al. 2011. VASCULAR-RELATED NAC-DOMAIN 7 directly regulates the expression of a broad range of genes for xylem vessel formation. The Plant Journal 66:579−90

doi: 10.1111/j.1365-313X.2011.04514.x
[63]

Han X, Zhao Y, Chen Y, Xu J, Jiang C, et al. 2022. Lignin biosynthesis and accumulation in response to abiotic stresses in woody plants. Forestry Research 2:9

doi: 10.48130/FR-2022-0009
[64]

Yang C, Xu Z, Song J, Conner K, Vizcay Barrena G, et al. 2007. Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the Endothecium and is essential for anther dehiscence. The Plant Cell 19:534−48

doi: 10.1105/tpc.106.046391
[65]

Kumari S, Nie J, Chen HS, Ma H, Stewart R, et al. 2012. Evaluation of gene association methods for coexpression network construction and biological knowledge discovery. PLoS One 7:e50411

doi: 10.1371/journal.pone.0050411
[66]

Wei Z, Wei H. 2024. Deciphering the intricate hierarchical gene regulatory network: unraveling multi-level regulation and modifications driving secondary cell wall formation. Horticulture Research 11(2):uhad281

doi: 10.1093/hr/uhad281
[67]

Thijs G, Lescot M, Marchal K, Rombauts S, De Moor B, et al. 2001. A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling. Bioinformatics 17:1113−22

doi: 10.1093/bioinformatics/17.12.1113
[68]

Chai G, Kong Y, Zhu M, Yu L, Qi G, et al. 2015. Arabidopsis C3H14 and C3H15 have overlapping roles in the regulation of secondary wall thickening and anther development. Journal of Experimental Botany 66:2595−609

doi: 10.1093/jxb/erv060
[69]

Qin W, Yin Q, Chen J, Zhao X, Yue F, et al. 2020. The class II KNOX transcription factors KNAT3 and KNAT7 synergistically regulate monolignol biosynthesis in Arabidopsis. Journal of Experimental Botany 71:5469−83

doi: 10.1093/jxb/eraa266
[70]

Li E, Bhargava A, Qiang W, Friedmann MC, Forneris N, et al. 2012. The Class II KNOX gene KNAT7 negatively regulates secondary wall formation in Arabidopsis and is functionally conserved in Populus. New Phytologist 194:102−15

doi: 10.1111/j.1469-8137.2011.04016.x
[71]

Nahiduzzaman M, Abdulrazak LF, Kibria HB, Khandakar A, Ayari MA, et al. 2025. A hybrid explainable model based on advanced machine learning and deep learning models for classifying brain tumors using MRI images. Scientific Reports 15:1649

doi: 10.1038/s41598-025-85874-7
[72]

Islam MK, Wagh H, Wei H. 2025. Dynamic gene attention focus (DyGAF): enhancing biomarker identification through dual-model attention networks. Bioinformatics and Biology Insights 19:11779322251325390

doi: 10.1177/11779322251325390
[73]

Park Y, Muttray NP, Hauschild AC. 2024. Species-agnostic transfer learning for cross-species transcriptomics data integration without gene orthology. Briefings in Bioinformatics 25:bbae004

doi: 10.1093/bib/bbae004