[1]

Zhu JK. 2016. Abiotic stress signaling and responses in plants. Cell 167:313−24

doi: 10.1016/j.cell.2016.08.029
[2]

Ahmad Anjum S, Xie X, Wang L, Saleem MF, Man C, et al. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research 6(9):2026−32

[3]

Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48:909−30

doi: 10.1016/j.plaphy.2010.08.016
[4]

Wang H, Guo X, Hu X, Li T, Fu X, et al. 2017. Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of different varieties of blueberry (Vaccinium spp.). Food Chemistry 217:773−81

doi: 10.1016/j.foodchem.2016.09.002
[5]

Duan Y, Tarafdar A, Chaurasia D, Singh A, Bhargava PC, et al. 2022. Blueberry fruit valorization and valuable constituents: a review. International Journal of Food Microbiology 381:109890

doi: 10.1016/j.ijfoodmicro.2022.109890
[6]

Chen X, Qiu L, Guo H, Wang Y, Yuan H, et al. 2017. Spermidine induces physiological and biochemical changes in southern highbush blueberry under drought stress. Brazilian Journal of Botany 40:841−51

doi: 10.1007/s40415-017-0401-4
[7]

Wang A, Wang L, Liu K, Liang K, Yang S, et al. 2022. Comparative transcriptome profiling reveals the defense pathways and mechanisms in the leaves and roots of blueberry to drought stress. Fruit Research 2:18

doi: 10.48130/FruRes-2022-0018
[8]

Molnar S, Clapa D, Mitre V. 2022. Response of the five highbush blueberry cultivars to in vitro induced drought stress by polyethylene glycol. Agronomy 12:732

doi: 10.3390/agronomy12030732
[9]

Zhang Y, Liu JB, Zhang XX. 2022. A more drought resistant stem xylem of southern highbush than rabbiteye blueberry is linked to its anatomy. Agronomy 12:1244

doi: 10.3390/agronomy12051244
[10]

Ru S, Sanz-Saez A, Leisner CP, Rehman T, Busby S. 2024. Review on blueberry drought tolerance from the perspective of cultivar improvement. Frontiers in Plant Science 15:1352768

doi: 10.3389/fpls.2024.1352768
[11]

Yang X, Lu M, Wang Y, Wang Y, Liu Z, Chen S. 2021. Response mechanism of plants to drought stress. Horticulturae 7:50

doi: 10.3390/horticulturae7030050
[12]

Noctor G, Mhamdi A, Foyer CH. 2014. The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiology 164:1636−48

doi: 10.1104/pp.113.233478
[13]

Tian G, Wang S, Wu J, Wang Y, Wang X, et al. 2023. Allelic variation of TaWD40-4B.1 contributes to drought tolerance by modulating catalase activity in wheat. Nature Communications 14:1200

doi: 10.1038/s41467-023-36901-6
[14]

Niu MX, Feng CH, He F, Zhang H, Bao Y, et al. 2024. The miR6445-NAC029 module regulates drought tolerance by regulating the expression of glutathione S-transferase U23 and reactive oxygen species scavenging in Populus. New Phytologist 242:2043−58

doi: 10.1111/nph.19703
[15]

Peng X, Feng C, Wang YT, Zhang X, Wang YY, et al. 2022. miR164g-MsNAC022 acts as a novel module mediating drought response by transcriptional regulation of reactive oxygen species scavenging systems in apple. Horticulture Research 9:uhac192

doi: 10.1093/hr/uhac192
[16]

Ambawat S, Sharma P, Yadav NR, Yadav RC. 2013. MYB transcription factor genes as regulators for plant responses: an overview. Physiology and Molecular Biology of Plant 19:307−21

doi: 10.1007/s12298-013-0179-1
[17]

He Z, Zhang P, Jia H, Zhang S, Nishawy E, et al. 2024. Regulatory mechanisms and breeding strategies for crop drought resistance. New Crops 1:100029

doi: 10.1016/j.ncrops.2024.100029
[18]

Liu F, Xi M, Liu T, Wu X, Ju L, et al. 2024. The central role of transcription factors in bridging biotic and abiotic stress responses for plants' resilience. New Crops 1:100005

doi: 10.1016/j.ncrops.2023.11.003
[19]

An JP, Li R, Qu FJ, You CX, Wang XF, et al. 2018. R2R3-MYB transcription factor MdMYB23 is involved in the cold tolerance and proanthocyanidin accumulation in apple. The Plant Journal 96(3):562−77

doi: 10.1111/tpj.14050
[20]

Xie Y, Chen P, Yan Y, Bao C, Li X, et al. 2018. An atypical R2R3 MYB transcription factor increases cold hardiness by CBF-dependent and CBF-independent pathways in apple. New Phytologist 218:201−18

doi: 10.1111/nph.14952
[21]

Zhu N, Duan B, Zheng H, Mu R, Zhao Y, et al. 2023. An R2R3 MYB gene GhMYB3 functions in drought stress by negatively regulating stomata movement and ROS accumulation. Plant Physiology and Biochemistry 107:107648

doi: 10.1016/j.plaphy.2023.107648
[22]

Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L. 2001. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. The Plant Cell 13:2099−114

doi: 10.1105/TPC.010098
[23]

Mellway RD, Tran LT, Prouse MB, Campbell MM, Constabel CP. 2009. The wound-, pathogen-, and ultraviolet b-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in Poplar. Plant Physiology 150(2):924−41

doi: 10.1104/pp.109.139071
[24]

Terrier N, Torregrosa L, Ageorges A, Vialet S, Verriès C, et al. 2009. Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway. Plant Physiology 149:1028−41

doi: 10.1104/pp.108.131862
[25]

Zhao M, Li J, Zhu L, Chang P, Li L, et al. 2019. Identification and characterization of MYB-bHLH-WD40 regulatory complex members controlling anthocyanidin biosynthesis in blueberry fruits development. Genes 10:496

doi: 10.3390/genes10070496
[26]

Lv K, Wei H, Liu G. 2021. A R2R3-MYB transcription factor gene, BpMYB123, regulates BpLEA14 to improve drought tolerance in Betula platyphylla. Frontiers in Plant Science 12:791390

doi: 10.3389/fpls.2021.791390
[27]

Mei J, Mu R, Niu Q, Zhu H, Chen R, et al. 2024. A MYB transcription factor GhTT2 of Gossypium hirsutum regulates proanthocyanidin accumulation and improves osmotic tolerance in Arabidopsis. Plant Cell, Tissue and Organ Culture 157:39

doi: 10.1007/s11240-024-02759-9
[28]

Qin X, Hu J, Xu G, Song H, Zhang L, et al. 2023. An efficient transformation system for fast production of VcCHS transgenic blueberry callus and its expressional analysis. Plants 12:2905

doi: 10.3390/plants12162905
[29]

Song GQ, Sink KC. 2004. Agrobacterium tumefaciens-mediated transformation of blueberry (Vaccinium corymbosum L.). Plant Cell Reports 23:475−84

doi: 10.1007/s00299-004-0842-7
[30]

Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB. 1997. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction. The Plant Journal 11:1187−94

doi: 10.1046/j.1365-313X.1997.11061187.x
[31]

Kaur N, Sharma I, Kirat K, Pati P. 2016. Detection of reactive oxygen species in Oryza sativa L. (rice). Bio-Protocol 6:e2061

doi: 10.21769/bioprotoc.2061
[32]

Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, et al. 1997. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. The EMBO Journal 16:4806−16

doi: 10.1093/emboj/16.16.4806
[33]

Ábrahám E, Hourton-Cabassa C, Erdei L, Szabados L. 2010. Methods for determination of proline in plants. In Plant Stress Toleranceed. Sunkar R. US: Humana Press. Vol 639. pp. 317−31. doi: 10.1007/978-1-60761-702-0_20

[34]

Maccarrone M, Rossi A, D'Andrea G, Amicosante G, Avigliano L. 1990. Electrophoretic detection of ascorbate oxidase activity by photoreduction of nitroblue tetrazolium. Analytical Biochemistry 188:101−4

doi: 10.1016/0003-2697(90)90534-G
[35]

Zhao Y, Li Y, Gao X. 2015. A new method for accurate determination of peroxidase activity based on fluorescence decrease of guaiacol. Chinese Journal of Analytical Chemistry 43:1040−46

doi: 10.11895/j.issn.0253-3820.150115
[36]

Li ZK, Li HL, Gong XW, Wang HF, Hao GY. 2024. Prediction and mapping of leaf water content in Populus alba var. pyramidalis using hyperspectral imagery. Plant Methods 20(1):184

doi: 10.1186/s13007-024-01312-1
[37]

Zeb A, Khan S, Ercişli S. 2022. Characterization of carotenoids, chlorophylls, total phenolic compounds, and antioxidant activity of Brassica oleracea L var. Botrytis leaves from Pakistan. Biologia 77:315−24

doi: 10.1007/s11756-021-00905-8
[38]

Naz T, Iqbal MM, Raza B, Mubeen MA, Nadeem MA, et al. 2025. Green remediation of lead (pb) from Pb-toxic soil by combined use of silicon nanomaterials and leguminous Lens culinaris L. plants. Scientific Reports 15(1):4366

doi: 10.1038/s41598-025-88759-x
[39]

Wang A, Liang K, Yang S, Cao Y, Wang L, et al. 2021. Genome-wide analysis of MYB transcription factors of Vaccinium corymbosum and their positive responses to drought stress. BMC Genomics 22(1):565

doi: 10.1186/s12864-021-07850-5
[40]

Song H, Cao Y, Zhao X, Zhang L. 2023. Na+-preferential ion transporter HKT1;1 mediates salt tolerance in blueberry. Plant Physiology 194:511−29

doi: 10.1093/plphys/kiad510
[41]

Xie RJ, Zheng L, Deng L, He SL, Yi SL, et al. 2014. The role of R2R3MYB transcription factors in plant stress tolerance. Journal of Animal and Plant Sciences 24:1821−33

[42]

Bohnert HJ, Nelson DE, Jensen RG. 1995. Adaptations to environmental stresses. The Plant Cell 7:1099−111

doi: 10.1105/tpc.7.7.1099
[43]

Li B, Liu R, Liu J, Zhang H, Tian Y, et al. 2024. ZmMYB56 regulates stomatal closure and drought tolerance in maize seedlings through the transcriptional regulation of ZmTOM7. New Crops 1:100012

doi: 10.1016/j.ncrops.2024.100012
[44]

Shen Y, Sun T, Pan Q, Anupol N, Chen H, et al. 2019. RrMYB5- and RrMYB10-regulated flavonoid biosynthesis plays a pivotal role in feedback loop responding to wounding and oxidation in Rosa rugosa. Plant Biotechnology Journal 17:2078−95

doi: 10.1111/pbi.13123
[45]

Simiyu DC, Bayaraa U, Jang JH, Lee OR. 2024. The R2R3-MYB transcription factor PgTT2 from Panax ginseng interacts with the WD40-repeat protein PgTTG1 during the regulation of proanthocyanidin biosynthesis and the response to salt stress. Plant Physiology and Biochemistry 214:108877

doi: 10.1016/j.plaphy.2024.108877
[46]

Zheng C, Wang X, Xu Y, Wang S, Jiang X, et al. 2023. The peroxidase gene OsPrx114 activated by OsWRKY50 enhances drought tolerance through ROS scavenging in rice. Plant Physiology and Biochemistry 204:108138

doi: 10.1016/j.plaphy.2023.108138
[47]

Hasanuzzaman M, Bhuyan MHMB, Parvin K, Bhuiyan TF, Anee TI, et al. 2020. Regulation of ROS metabolism in plants under environmental stress: a review of recent experimental evidence. International Journal of Molecular Sciences 21(22):8695

doi: 10.3390/ijms21228695
[48]

Choudhury FK, Rivero RM, Blumwald E, Mittler R. 2017. Reactive oxygen species, abiotic stress and stress combination. The Plant Journal 90:856−67

doi: 10.1111/tpj.13299
[49]

Li D, Yang J, Pak S, Zeng M, Sun J, et al. 2022. PuC3H35 confers drought tolerance by enhancing lignin and proanthocyanidin biosynthesis in the roots of Populus ussuriensis. New Phytologist 233:390−408

doi: 10.1111/nph.17799
[50]

Ghosh UK, Islam MN, Siddiqui MN, Cao X, Khan MR. 2022. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. Plant Biology 24:227−39

doi: 10.1111/plb.13363
[51]

Zulfiqar F, Ashraf M. 2023. Proline alleviates abiotic stress induced oxidative stress in plants. Journal of Plant Growth Regulation 42:4629−51

doi: 10.1007/s00344-022-10839-3
[52]

Guo H, Wang Y, Wang L, Hu P, Wang Y, et al. 2017. Expression of the MYB transcription factor gene BplMYB46 affects abiotic stress tolerance and secondary cell wall deposition in Betula platyphylla. Plant Biotechnology Journal 15:107−21

doi: 10.1111/pbi.12595
[53]

Pitzschke A, Forzani C, Hirt H. 2006. Reactive oxygen species signaling in plants. Antioxidants & Redox Signaling 8:1757−64

doi: 10.1089/ars.2006.8.1757
[54]

Li Y, Cao XL, Zhu Y, Yang XM, Zhang KN, et al. 2019. Osa-miR398b boosts H2O2 production and rice blast disease-resistance via multiple superoxide dismutases. New Phytologist 222:1507−22

doi: 10.1111/nph.15678
[55]

Wang Y, Branicky R, Noë A, Hekimi S. 2018. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. Journal of Cell Biology 217:1915−28

doi: 10.1083/jcb.201708007
[56]

Wu Y, Li T, Cheng Z, Zhao D, Tao J. 2021. R2R3-MYB transcription factor PlMYB108 confers drought tolerance in herbaceous peony (Paeonia lactiflora Pall.). International Journal of Molecular Sciences 22(21):11884

doi: 10.3390/ijms222111884
[57]

Chen T, Li W, Hu X, Guo J, Liu A, et al. 2015. A cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress. Plant and Cell Physiology 56:917−29

doi: 10.1093/pcp/pcv019
[58]

Luo P, Shen Y, Jin S, Huang S, Cheng X, et al. 2016. Overexpression of Rosa rugosa anthocyanidin reductase enhances tobacco tolerance to abiotic stress through increased ROS scavenging and modulation of ABA signaling. Plant Science 245:35−49

doi: 10.1016/j.plantsci.2016.01.007