[1]

Willet SG, Mills JC. 2016. Stomach organ and cell lineage differentiation: from embryogenesis to adult homeostasis. Cellular and Molecular Gastroenterology and Hepatology 2(5):546−59

doi: 10.1016/j.jcmgh.2016.05.006
[2]

McCracken KW, Wells JM. 2017. Mechanisms of embryonic stomach development. Seminars in Cell and Developmental Biology 66:36−42

doi: 10.1016/j.semcdb.2017.02.004
[3]

Wang F, Meng W, Wang B, Qiao L. 2014. Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Letters 345(2):196−202

doi: 10.1016/j.canlet.2013.08.016
[4]

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, et al. 2024. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 74(3):229−63

doi: 10.3322/caac.21834
[5]

López MJ, Carbajal J, Alfaro AL, Saravia LG, Zanabria D, et al. 2023. Characteristics of gastric cancer around the world. Critical Reviews in Oncology Hematology 181:103841

doi: 10.1016/j.critrevonc.2022.103841
[6]

Machlowska J, Baj J, Sitarz M, Maciejewski R, Sitarz R. 2020. Gastric cancer: epidemiology, risk factors, classification, genomic characteristics and treatment strategies. International Journal Of Molecular Sciences 21(11):4012

doi: 10.3390/ijms21114012
[7]

Laurén P. 1965. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. Acta Pathologica et Microbiologica Scandinavica 64:31−49

doi: 10.1111/apm.1965.64.1.31
[8]

Joshi SS, Badgwell BD. 2021. Current treatment and recent progress in gastric cancer. CA: A Cancer Journal for Clinicians 71(3):264−79

doi: 10.3322/caac.21657
[9]

Johnston FM, Beckman M. 2019. Updates on management of gastric cancer. Current Oncology Reports 21(8):67

doi: 10.1007/s11912-019-0820-4
[10]

Sachs N, Clevers H. 2014. Organoid cultures for the analysis of cancer phenotypes. Current Opinion in Genetics & Development 24:68−73

doi: 10.1016/j.gde.2013.11.012
[11]

Stewart OA, Wu F, Chen Y. 2020. The role of gastric microbiota in gastric cancer. Gut Microbes 11(5):1220−30

doi: 10.1080/19490976.2020.1762520
[12]

Li Z, Wang J, Wang Z, Xu Y. 2023. Towards an optimal model for gastric cancer peritoneal metastasis: current challenges and future directions. eBioMedicine 92:104601

doi: 10.1016/j.ebiom.2023.104601
[13]

Kang SM, Kim D, Lee JH, Takayama S, Park JY. 2021. Engineered microsystems for spheroid and organoid studies. Advanced Healthcare Materials 10(2):e2001284

doi: 10.1002/adhm.202001284
[14]

Li Y, Kumacheva E. 2018. Hydrogel microenvironments for cancer spheroid growth and drug screening. Science Advances 4(4):eaas8998

doi: 10.1126/sciadv.aas8998
[15]

Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, et al. 2009. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262−65

doi: 10.1038/nature07935
[16]

Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, et al. 2010. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6(1):25−36

doi: 10.1016/j.stem.2009.11.013
[17]

Stange DE, Koo BK, Huch M, Sibbel G, Basak O, et al. 2013. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 155(2):357−68

doi: 10.1016/j.cell.2013.09.008
[18]

McCracken KW, Catá EM, Crawford CM, Sinagoga KL, Schumacher M, et al. 2014. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516(7531):400−4

doi: 10.1038/nature13863
[19]

McCracken KW, Aihara E, Martin B, Crawford CM, Broda T, et al. 2017. Wnt/β-catenin promotes gastric fundus specification in mice and humans. Nature 541(7636):182−87

doi: 10.1038/nature21021
[20]

Yan HHN, Siu HC, Law S, Ho SL, Yue SSK, et al. 2018. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell 23(6):882−897.e11

doi: 10.1016/j.stem.2018.09.016
[21]

Eicher AK, Kechele DO, Sundaram N, Berns HM, Poling HM, et al. 2022. Functional human gastrointestinal organoids can be engineered from three primary germ layers derived separately from pluripotent stem cells. Cell Stem Cell 29(1):36−51.e6

doi: 10.1016/j.stem.2021.10.010
[22]

Chinese Anti-Cancer Association. 2024. Group standard for the construction, quality control, and preservation of human gastric cancer organoids. Chinese Journal of Digestive Surgery 23:761−69

doi: 10.3760/cma.j.cn115610-20240527-00263
[23]

Beumer J, Geurts MH, Geurts V, Andersson-Rolf A, Akkerman N, et al. 2024. Description and functional validation of human enteroendocrine cell sensors. Science 386(6719):341−48

doi: 10.1126/science.adl1460
[24]

Tong QY, Pang MJ, Hu XH, Huang XZ, Sun JX, et al. 2024. Gastric intestinal metaplasia: progress and remaining challenges. Journal of Gastroenterology 59(4):285−301

doi: 10.1007/s00535-023-02073-9
[25]

Yue SSK, Tong Y, Siu HC, Ho SL, Law SYK, et al. 2025. Divergent lineage trajectories and genetic landscapes in human gastric intestinal metaplasia organoids associated with early neoplastic progression. Gut 74(4):522−38

doi: 10.1136/gutjnl-2024-332594
[26]

Hofer M, Kim Y, Broguiere N, Gorostidi F, Klein JA, et al. 2025. Accessible homeostatic gastric organoids reveal secondary cell type-specific host-pathogen interactions in Helicobacter pylori infections. Nature Communications 16(1):2767

doi: 10.1038/s41467-025-57131-y
[27]

Karagiannis P, Takahashi K, Saito M, Yoshida Y, Okita K, et al. 2019. Induced pluripotent stem cells and their use in human models of disease and development. Physiological Reviews 99(1):79−114

doi: 10.1152/physrev.00039.2017
[28]

Wells JM. 2016. Regenerative medicine in 2015: generating and regenerating the digestive system. Nature Reviews Gastroenterology & Hepatology 13(2):65−66

doi: 10.1038/nrgastro.2015.223
[29]

Kurokawa K, Hayakawa Y, Koike K. 2021. Plasticity of intestinal epithelium: stem cell niches and regulatory signals. International Journal of Molecular Sciences 22(1):357

doi: 10.3390/ijms22010357
[30]

Broda TR, McCracken KW, Wells JM. 2019. Generation of human antral and fundic gastric organoids from pluripotent stem cells. Nature Protocols 14(1):28−50

doi: 10.1038/s41596-018-0080-z
[31]

Noguchi TK, Ninomiya N, Sekine M, Komazaki S, Wang PC, et al. 2015. Generation of stomach tissue from mouse embryonic stem cells. Nature Cell Biology 17(8):984−93

doi: 10.1038/ncb3200
[32]

Bartfeld S, Bayram T, van de Wetering M, Huch M, Begthel H, et al. 2015. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148(1):126−136.e6

doi: 10.1053/j.gastro.2014.09.042
[33]

Yin X, Farin HF, van Es JH, Clevers H, Langer R, et al. 2014. Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nature Methods 11(1):106−12

doi: 10.1038/nmeth.2737
[34]

Seidlitz T, Koo BK, Stange DE. 2021. Gastric organoids—an in vitro model system for the study of gastric development and road to personalized medicine. Cell Death and Differentiation 28(1):68−83

doi: 10.1038/s41418-020-00662-2
[35]

Gao M, Lin M, Rao M, Thompson H, Hirai K, et al. 2018. Development of patient-derived gastric cancer organoids from endoscopic biopsies and surgical tissues. Annals of Surgical Oncology 25(9):2767−75

doi: 10.1245/s10434-018-6662-8
[36]

Song H, Park JY, Kim JH, Shin TS, Hong SA, et al. 2022. Establishment of patient-derived gastric cancer organoid model from tissue obtained by endoscopic biopsies. The Journal of Korean Medical Science 37(28):e220

doi: 10.3346/jkms.2022.37.e220
[37]

McDonald HG, Harper MM, Hill K, Gao A, Solomon AL, et al. 2023. Creation of EGD-derived gastric cancer organoids to predict treatment responses. Cancers 15(11):3036

doi: 10.3390/cancers15113036
[38]

Morimoto T, Takemura Y, Miura T, Yamamoto T, Kakizaki F, et al. 2023. Novel and efficient method for culturing patient-derived gastric cancer stem cells. Cancer Science 114(8):3259−69

doi: 10.1111/cas.15840
[39]

Wallaschek N, Niklas C, Pompaiah M, Wiegering A, Germer CT, et al. 2019. Establishing pure cancer organoid cultures: identification, selection and verification of cancer phenotypes and genotypes. Journal of Molecular Cell Biology 431(15):2884−93

[40]

Zhao Y, Li S, Zhu L, Huang M, Xie Y, et al. 2024. Personalized drug screening using patient-derived organoid and its clinical relevance in gastric cancer. Cell Reports Medicine 5(7):101627

doi: 10.1016/j.xcrm.2024.101627
[41]

Nascakova Z, He J, Papa G, Francas B, Azizi F, et al. 2024. Helicobacter pylori induces the expression of Lgr5 and stem cell properties in gastric target cells. Life Science Alliance 7(11):e202402783

doi: 10.26508/lsa.202402783
[42]

Mak TK, Li X, Huang H, Wu K, Huang Z, et al. 2022. The cancer-associated fibroblast-related signature predicts prognosis and indicates immune microenvironment infiltration in gastric cancer. Frontiers in Immunology 13:951214

doi: 10.3389/fimmu.2022.951214
[43]

Zavros Y, Merchant JL. 2022. The immune microenvironment in gastric adenocarcinoma. Nature Reviews Gastroenterology & Hepatology 19(7):451−67

doi: 10.1038/s41575-022-00591-0
[44]

Yao L, Hou J, Wu X, Lu Y, Jin Z, et al. 2023. Cancer-associated fibroblasts impair the cytotoxic function of NK cells in gastric cancer by inducing ferroptosis via iron regulation. Redox Biology 67:102923

doi: 10.1016/j.redox.2023.102923
[45]

Le Guen L, Marchal S, Faure S, de Santa Barbara P. 2015. Mesenchymal-epithelial interactions during digestive tract development and epithelial stem cell regeneration. Cellular and Molecular Life Sciences 72(20):3883−96

doi: 10.1007/s00018-015-1975-2
[46]

Miao ZF, Adkins-Threats M, Burclaff JR, Osaki LH, Sun JX, et al. 2020. A metformin-responsive metabolic pathway controls distinct steps in gastric progenitor fate decisions and maturation. Cell Stem Cell 26(6):910−925.e6

doi: 10.1016/j.stem.2020.03.006
[47]

Miao ZF, Lewis MA, Cho CJ, Adkins-Threats M, Park D, et al. 2020. A dedicated evolutionarily conserved molecular network licenses differentiated cells to return to the cell cycle. Developmental Cell 55(2):178−194.e7

doi: 10.1016/j.devcel.2020.07.005
[48]

Kamboj AK, Cotter TG, Oxentenko AS. 2017. Helicobacter pylori: the past, present, and future in management. Mayo Clinic Proceedings 92(4):599−604

doi: 10.1016/j.mayocp.2016.11.017
[49]

Ansari S, Yamaoka Y. 2019. Helicobacter pylori virulence factors exploiting gastric colonization and its pathogenicity. Toxins 11(11):677

doi: 10.3390/toxins11110677
[50]

Camilo V, Sugiyama T, Touati E. 2017. Pathogenesis of Helicobacter pylori infection. Helicobacter 22:e12405

doi: 10.1111/hel.12405
[51]

Amieva M, Peek RM Jr. 2016. Pathobiology of Helicobacter pylori-induced gastric cancer. Gastroenterology 150(1):64−78

doi: 10.1053/j.gastro.2015.09.004
[52]

Wroblewski LE, Piazuelo MB, Chaturvedi R, Schumacher M, Aihara E, et al. 2015. Helicobacter pylori targets cancer-associated apical-junctional constituents in gastroids and gastric epithelial cells. Gut 64(5):720−30

doi: 10.1136/gutjnl-2014-307650
[53]

Bertaux-Skeirik N, Feng R, Schumacher MA, Li J, Mahe MM, et al. 2015. CD44 plays a functional role in Helicobacter pylori-induced epithelial cell proliferation. PLoS Pathogens 11(2):e1004663

doi: 10.1371/journal.ppat.1004663
[54]

Liu B, Bukhari I, Li F, Ren F, Xia X, et al. 2025. Enhanced LRP8 expression induced by Helicobacter pylori drives gastric cancer progression by facilitating β-Catenin nuclear translocation. Journal of Advanced Research 69:299−312

doi: 10.1016/j.jare.2024.04.002
[55]

Holokai L, Chakrabarti J, Broda T, Chang J, Hawkins JA, et al. 2019. Increased programmed death-ligand 1 is an early epithelial cell response to Helicobacter pylori infection. PLoS Pathogens 15(1):e1007468

doi: 10.1371/journal.ppat.1007468
[56]

Suarez G, Romero-Gallo J, Piazuelo MB, Sierra JC, Delgado AG, et al. 2019. Nod1 imprints inflammatory and carcinogenic responses toward the gastric pathogen Helicobacter pylori. Cancer Research 79(7):1600−11

doi: 10.1158/0008-5472.CAN-18-2651
[57]

Sexton RE, Al Hallak MN, Diab M, Azmi AS. 2020. Gastric cancer: a comprehensive review of current and future treatment strategies. Cancer and Metastasis Reviews 39(4):1179−203

doi: 10.1007/s10555-020-09925-3
[58]

Jin H, Wang L, Bernards R. 2023. Rational combinations of targeted cancer therapies: background, advances and challenges. Nature Reviews Drug Discovery 22(3):213−34

doi: 10.1038/s41573-022-00615-z
[59]

Guan WL, He Y, Xu RH. 2023. Gastric cancer treatment: recent progress and future perspectives. Journal of Hematology&Oncology 16(1):57

doi: 10.1186/s13045-023-01451-3
[60]

Zeng Y, Jin RU. 2022. Molecular pathogenesis, targeted therapies, and future perspectives for gastric cancer. Seminars in Cancer Biology 86:566−82

doi: 10.1016/j.semcancer.2021.12.004
[61]

Ukai S, Honma R, Sakamoto N, Yamamoto Y, Pham QT, et al. 2020. Molecular biological analysis of 5-FU-resistant gastric cancer organoids; KHDRBS3 contributes to the attainment of features of cancer stem cell. Oncogene 39(50):7265−78

doi: 10.1038/s41388-020-01492-9
[62]

Wong TL, Loh JJ, Lu S, Yan HHN, Siu HC, et al. 2023. ADAR1-mediated RNA editing of SCD1 drives drug resistance and self-renewal in gastric cancer. Nature Communications 14(1):2861

doi: 10.1038/s41467-023-38581-8
[63]

Ouyang S, Li H, Lou L, Huang Q, Zhang Z, et al. 2022. Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer. Redox Biology 52:102317

doi: 10.1016/j.redox.2022.102317
[64]

Zhang Z, Huang W, Huang D, Xu Z, Xie Q, et al. 2025. Repurposing of phosphodiesterase-5 inhibitor sildenafil as a therapeutic agent to prevent gastric cancer growth through suppressing c-MYC stability for IL-6 transcription. Communications Biology 8(1):85

doi: 10.1038/s42003-025-07519-9
[65]

Yang R, Kwan W, Du Y, Yan R, Zang L, et al. 2024. Drug-induced senescence by aurora kinase inhibitors attenuates innate immune response of macrophages on gastric cancer organoids. Cancer Letters 598:217106

doi: 10.1016/j.canlet.2024.217106
[66]

Liu J, Yuan Q, Guo H, Guan H, Hong Z, et al. 2024. Deciphering drug resistance in gastric cancer: potential mechanisms and future perspectives. Biomedicine & Pharmacotherapy 173:116310

doi: 10.1016/j.biopha.2024.116310
[67]

Che G, Yin J, Wang W, Luo Y, Chen Y, et al. 2024. Circumventing drug resistance in gastric cancer: a spatial multi-omics exploration of chemo and immuno-therapeutic response dynamics. Drug Resistance Updates 74:101080

doi: 10.1016/j.drup.2024.101080
[68]

Cancer Genome Atlas Research N. 2014. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513(7517):202−9

doi: 10.1038/nature13480
[69]

Ho SWT, Tan P. 2019. Dissection of gastric cancer heterogeneity for precision oncology. Cancer Science 110(11):3405−14

doi: 10.1111/cas.14191
[70]

Liu X, Meltzer SJ. 2017. Gastric Cancer in the era of precision medicine. Cellular and Molecular Gastroenterology and Hepatology 3(3):348−58

doi: 10.1016/j.jcmgh.2017.02.003
[71]

Shao F, Huang X, Ma Z, Li L, Qi C. 2025. Differences in chemotherapeutic drug sensitivity before and after patient-derived tumor organoid construction. Toxicology and Applied Pharmacology 499:117340

doi: 10.1016/j.taap.2025.117340
[72]

Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández-Mateos J, et al. 2018. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359(6378):920−26

doi: 10.1126/science.aao2774
[73]

Wang T, Song W, Meng Q, Qu C, Guo S, et al. 2024. Tumorigenicity and prediction of clinical prognosis of patient-derived gastric cancer organoids. Clinical and Translational Medicine 14(2):e1588

doi: 10.1002/ctm2.1588
[74]

Xiang D, He A, Zhou R, Wang Y, Xiao X, et al. 2024. Building consensus on the application of organoid-based drug sensitivity testing in cancer precision medicine and drug development. Theranostics 14(8):3300−16

doi: 10.7150/thno.96027
[75]

Chakrabarti J, Koh V, So JBY, Yong WP, Zavros Y. 2021. A preclinical human-derived autologous gastric cancer organoid/immune cell co-culture model to predict the efficacy of targeted therapies. Journal of Visualized Experiments 6:e61443

doi: 10.3791/61443
[76]

Ota H, Tanabe K, Saeki Y, Takemoto Y, Chikuie E, et al. 2024. Establishment of a novel overlay culture method that enables immune response assessment using gastric cancer organoids. Heliyon 10(1):e23520

doi: 10.1016/j.heliyon.2023.e23520
[77]

Xu X, Gao Y, Dai J, Wang Q, Wang Z, et al. 2024. Gastric cancer assembloids derived from patient-derived xenografts: a preclinical model for therapeutic drug screening. Small Methods 8(9):e2400204

doi: 10.1002/smtd.202400204
[78]

Kan L, Yu Y, Wang Y, Shi L, Fan T, et al. 2025. The application of organoids in investigating immune evasion in the microenvironment of gastric cancer and screening novel drug candidates. Molecular Cancer 24(1):125

doi: 10.1186/s12943-025-02328-4
[79]

Yuan P, Wu Z, Li Z, Bu Z, Wu A, et al. 2019. Impact of postoperative major complications on long-term survival after radical resection of gastric cancer. BMC Cancer 19(1):833

doi: 10.1186/s12885-019-6024-3
[80]

Lewis A, Koukoura A, Tsianos GI, Gargavanis AA, Nielsen AA, et al. 2021. Organ donation in the US and Europe: the supply vs demand imbalance. Transplantation Reviews 35(2):100585

doi: 10.1016/j.trre.2020.100585
[81]

Yoshihara E, O'Connor C, Gasser E, Wei Z, Oh TG, et al. 2020. Immune-evasive human islet-like organoids ameliorate diabetes. Nature 586(7830):606−11

doi: 10.1038/s41586-020-2631-z
[82]

Sampaziotis F, Muraro D, Tysoe OC, Sawiak S, Beach TE, et al. 2021. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science 371(6531):839−46

doi: 10.1126/science.aaz6964
[83]

Engevik AC, Feng R, Choi E, White S, Bertaux-Skeirik N, et al. 2016. The development of Spasmolytic Polypeptide/TFF2-Expressing Metaplasia (SPEM) during gastric repair is absent in the aged stomach. Cellular and Molecular Gastroenterology and Hepatology 2(5):605−24

doi: 10.1016/j.jcmgh.2016.05.004
[84]

Lee H. 2023. Engineering in vitro models: bioprinting of organoids with artificial intelligence. Cyborg and Bionic Systems 4:0018

doi: 10.34133/cbsystems.0018
[85]

Saorin G, Caligiuri I, Rizzolio F. 2023. Microfluidic organoids-on-a-chip: The future of human models. Seminars in Cell and Developmental Biology 144:41−54

doi: 10.1016/j.semcdb.2022.10.001
[86]

Lee KK, McCauley HA, Broda TR, Kofron MJ, Wells JM, et al. 2018. Human stomach-on-a-chip with luminal flow and peristaltic-like motility. Lab on a Chip 18(20):3079−85

doi: 10.1039/c8lc00910d
[87]

Bauer S, Wennberg Huldt C, Kanebratt KP, Durieux I, Gunne D, et al. 2017. Functional coupling of human pancreatic islets and liver spheroids on-a-chip: Towards a novel human ex vivo type 2 diabetes model. Scientific Reports 7(1):14620

doi: 10.1038/s41598-017-14815-w
[88]

Soybel DI. 2005. Anatomy and physiology of the stomach. Surgical Clinics of North America 85(5):875−94

doi: 10.1016/j.suc.2005.05.009
[89]

Hunt RH, Camilleri M, Crowe SE, El-Omar EM, Fox JG, et al. 2015. The stomach in health and disease. Gut 64:1650−68

doi: 10.1136/gutjnl-2014-307595
[90]

Gambardella V, Castillo J, Tarazona N, Gimeno-Valiente F, Martínez-Ciarpaglini C, et al. 2020. The role of tumor-associated macrophages in gastric cancer development and their potential as a therapeutic target. Cancer Treatment Reviews 86:102015

doi: 10.1016/j.ctrv.2020.102015
[91]

Koh V, Chakrabarti J, Torvund M, Steele N, Hawkins JA, et al. 2021. Hedgehog transcriptional effector GLI mediates mTOR-Induced PD-L1 expression in gastric cancer organoids. Cancer Letters 518:59−71

doi: 10.1016/j.canlet.2021.06.007
[92]

Xiang Z, Zhou Z, Song S, Li J, Ji J, et al. 2021. Dexamethasone suppresses immune evasion by inducing GR/STAT3 mediated downregulation of PD-L1 and IDO1 pathways. Oncogene 40(31):5002−12

doi: 10.1038/s41388-021-01897-0
[93]

Sebrell TA, Hashimi M, Sidar B, Wilkinson RA, Kirpotina L, et al. 2019. A novel gastric spheroid co-culture model reveals chemokine-dependent recruitment of human dendritic cells to the gastric epithelium. Cellular and Molecular Gastroenterology and Hepatology 8(1):157−171.e3

doi: 10.1016/j.jcmgh.2019.02.010
[94]

Cherne MD, Sidar B, Sebrell TA, Sanchez HS, Heaton K, et al. 2021. A synthetic hydrogel, VitroGel® ORGANOID-3, improves immune cell-epithelial interactions in a tissue chip co-culture model of human gastric organoids and dendritic cells. Frontiers in Pharmacology 12:707891

doi: 10.3389/fphar.2021.707891
[95]

Ding L, Chakrabarti J, Sheriff S, Li Q, Thi Hong HN, et al. 2022. Toll-like receptor 9 pathway mediates schlafen+-MDSC polarization during helicobacter-induced gastric metaplasias. Gastroenterology 163(2):411−425.e4

doi: 10.1053/j.gastro.2022.04.031
[96]

Contreras-Panta EW, Lee SH, Won Y, Norlander AE, Simmons AJ, et al. 2024. Interleukin 13 promotes maturation and proliferation in metaplastic gastroids. Cellular and Molecular Gastroenterology and Hepatology 18(3):101366

doi: 10.1016/j.jcmgh.2024.101366
[97]

Kleinman HK, Martin GR. 2005. Matrigel: basement membrane matrix with biological activity. Seminars in Cancer Biology 15(5):378−86

doi: 10.1016/j.semcancer.2005.05.004
[98]

Song H, Jiang H, Hu W, Hai Y, Cai Y, et al. 2024. Cervical extracellular matrix hydrogel optimizes tumor heterogeneity of cervical squamous cell carcinoma organoids. Science Advances 10(20):eadl3511

doi: 10.1126/sciadv.adl3511
[99]

Mosquera MJ, Kim S, Bareja R, Fang Z, Cai S, et al. 2022. Extracellular matrix in synthetic hydrogel-based prostate cancer organoids regulate therapeutic response to EZH2 and DRD2 inhibitors. Advanced Materials 34(2):e2100096

doi: 10.1002/adma.202100096
[100]

Pacesa M, Pelea O, Jinek M. 2024. Past, present, and future of CRISPR genome editing technologies. Cell 187(5):1076−100

doi: 10.1016/j.cell.2024.01.042
[101]

Lo YH, Kolahi KS, Du Y, Chang CY, Krokhotin A, et al. 2021. A CRISPR/Cas9-engineered ARID1A-deficient human gastric cancer organoid model reveals essential and nonessential modes of oncogenic transformation. Cancer Discovery 11(6):1562−81

doi: 10.1158/2159-8290.CD-20-1109
[102]

Guenther AA, Ahn S, Min J, Zhang C, Lee HJ, et al. 2025. Cortactin facilitates malignant transformation of dysplastic cells in gastric cancer development. Cellular and Molecular Gastroenterology and Hepatology 19(6):101490

doi: 10.1016/j.jcmgh.2025.101490
[103]

Gerli MFM, Cala G, Beesley MA, Sina B, Tullie L, et al. 2024. Single-cell guided prenatal derivation of primary fetal epithelial organoids from human amniotic and tracheal fluids. Nature Medicine 30(3):875−87

doi: 10.1038/s41591-024-02807-z