[1]

Zhang CC, Sun JH, Wang YH, Wang HY, Guo XZ, et al. 2023. Research progress in microevolutionary process of excellent traits and quality of Dao-di herbs. China Journal of Chinese Materia Medica 48:6021−29 (in Chinese)

doi: 10.19540/j.cnki.cjcmm.20230709.101
[2]

Zhang W, Bai Q, Cui G, Zhang X, Lyu C, et al. 2023. Recent progress and ongoing challenges in Rhizoma atractylodis research: biogeography, biosynthesis, quality formation and control. Medicinal Plant Biology 2:19

doi: 10.48130/mpb-2023-0019
[3]

Zhang C, Wang H, Lyu C, Wang Y, Sun J, et al. 2023. Authenticating the geographic origins of Atractylodes lancea rhizome chemotypes in China through metabolite marker identification. Frontiers in Plant Science 14:1237800

doi: 10.3389/fpls.2023.1237800
[4]

Husby A, Visser ME, Kruuk LEB. 2011. Speeding up microevolution: the effects of increasing temperature on selection and genetic variance in a wild bird population. PLoS Biology 9:e1000585

doi: 10.1371/journal.pbio.1000585
[5]

Grotewold, E. 2016. Flavonols drive plant microevolution. Nature Genetics 48:112−13

doi: 10.1038/ng.3490
[6]

Commission, C. P. 2020. Pharmacopoeia of the People's Republic of China. Beijing: China Medical Science Press

[7]

Zhang WJ, Zhao ZY, Chang LK, Cao Y, Wang S, et al. 2021. Atractylodis rhizoma: a review of its traditional uses, phytochemistry, pharmacology, toxicology and quality control. Journal of Ethnopharmacology 266:113415

doi: 10.1016/j.jep.2020.113415
[8]

Guo L. 2005. Research on ecological factors affecting the quality of Atractylodes lancea (in Chinese). Beijing: China Academy of Chinese Medical Sciences

[9]

Zhang CC, Qin M, Wang HY, Guo XZ, Yan BB, et al. 2024. Research progress on biological characteristics and propagation technology of Atractylodes lancea. China Journal of Chinese Materia Medica 49(12):3144−51 (in Chinese)

doi: 10.19540/j.cnki.cjcmm.20240129.102
[10]

Yu D, Zha L, Peng H. 2018. Species and historical origin of "frost-like exudation" medicinal materials. China Journal of Chinese Materia Medica 43:2624−27 (in Chinese)

[11]

Wagner H, Bauer R, Melchart D, Xiao PG, Staudinger A. 2011. Rhizoma Atractylodis lanceae Cangzhu. In Chromatographic Fingerprint Analysis of Herbal Medicines: Thin-layer and High-Performance Liquid Chromatography of Chinese Drugs, eds. Wagner H, Bauer R, Melchart D, Xiao PG, Staudinger A. Vienna: Springer. pp. 691−706. doi: 10.1007/978-3-7091-0763-8_58

[12]

Jun X, Fu P, Lei Y, Cheng P. 2018. Pharmacological effects of medicinal components of Atractylodes lancea (Thunb.) DC. Chinese Medicine 13:59

doi: 10.1186/s13020-018-0216-7
[13]

Chang L, Zhang W, Cao Y, Yang J, Wang S, et al. 2022. Analysis of oligosaccharide mapping of Atractylodis rhizoma from different habitats. Chinese Journal of Experimental Traditional Medical Formulae 28(23):189−96

doi: 10.13422/j.cnki.syfjx.20220547
[14]

Yao D, Ma C, Ke C, Wang D, Xu K, et al. 2025. Integrating transcriptomics, metabolomics, and microbiomics to explore the mechanism of action of bran-fried Atractylodes lancea rhizome polysaccharide in ameliorating the enhanced pharmacological effects of dextran sodium sulfate-induced colitis. Journal of Ethnopharmacology 349:119805

doi: 10.1016/j.jep.2025.119805
[15]

Chen X, Jia R, Zhang K, Sun S, Mei M, et al. 2025. Structural Characterization and anti-gouty nephropathy potential of polysaccharides from Atractylodes chinensis. Molecules 30(4):757

doi: 10.3390/molecules30040757
[16]

Cheng Y, Mai JY, Hou TL, Ping J, Chen JJ. 2016. Antiviral activities of atractylon from Atractylodis Rhizoma. Molecular Medicine Reports 14(4):3704−10

doi: 10.3892/mmr.2016.5713
[17]

Yang L, Yu H, Hou A, Man W, Wang S, et al. 2021. A review of the ethnopharmacology, phytochemistry, pharmacology, application, quality control, processing, toxicology, and pharmacokinetics of the dried rhizome of Atractylodes macrocephala. Frontiers in Pharmacology 12:727154

doi: 10.3389/fphar.2021.727154
[18]

Ouyang Z, Zhang L, Zhao M, Wang P, Wei Y, et al. 2012. Identification and quantification of sesquiterpenes and polyacetylenes in Atractylodes lancea from various geographical origins using GC-MS analysis. Revista Brasileira de Farmacognosia 22:957−63

doi: 10.1590/s0102-695x2012005000051
[19]

Tsusaka T, Makino B, Ohsawa R, Ezura H. 2020. Evaluation of heritability of β-eudesmol/hinesol content ratio in Atractylodes lancea De Candolle. Hereditas 157:7

doi: 10.1186/s41065-020-00123-3
[20]

He F, Wang W, Wu M, Fang Y, Wang S, et al. 2020. Antioxidant and antibacterial activities of essential oil from Atractylodes lancea rhizomes. Industrial Crops and Products 153:112552

doi: 10.1016/j.indcrop.2020.112552
[21]

Huang LQ, Guo LP. 2013. The mechanism of formation of Dao-di herbs. In Molecular Pharmacognosy, ed. Huang L. Dordrecht: Springer. pp. 67−81. doi: 10.1007/978-94-007-4945-0_4

[22]

Guo LP, Zhou LY, Kang CZ, Wang HY, Zhang WJ, et al. 2020. Strategies for medicinal plants adapting environmental stress and" simulative habitat cultivation" of Dao-di herbs. China Journal of Chinese Materia Medica 45(9):1969−74 (in Chinese)

doi: 10.19540/j.cnki.cjcmm.20200302.101
[23]

Zhou J. 2009. Effects of Adversity Stress on plant metabolism and essential oil of Atractylodes lancea. Master's Thesis (in Chinese). Shandong University of Traditional Chinese Medicine, Jinan, China

[24]

Yang T. 2016. The interaction between endophytic fungi of Atractylodes lancea and its plant circle microorganisms and their impact on host drought resistance. Master's Thesis (in Chinese). Nanjing Normal University, Nanjing, China

[25]

Zhang J, Liu DH, Guo LP, Jin H, Yang G, et al. 2011. Effects of arbuscular mycorrhizae fungi on biomass and essential oil in rhizome of Atractylodes lancea in different temperatures. Chinese Traditional and Herbal Drugs 42(2):372−75 (in Chinese)

[26]

Guo X, Li Q, Yan B, Wang Y, Wang S, et al. 2022. Mild shading promotes sesquiterpenoid synthesis and accumulation in Atractylodes lancea by regulating photosynthesis and phytohormones. Scientific Reports 12:21648

doi: 10.1038/s41598-022-25494-7
[27]

Guo X, Wang Y, Lin H, Yan B, Kang C, et al. 2024. Transcriptomic insights into the effects of different light quality treatments on the volatile organic compounds in Atractylodes lancea. Journal of Essential Oil Bearing Plants 27(4):959−75

doi: 10.1080/0972060X.2024.2361735
[28]

Wang H, Wang Y, Kang C, Wang S, Zhang Y, et al. 2022. Drought stress modifies the community structure of root-associated microbes that improve Atractylodes lancea growth and medicinal compound accumulation. Frontiers in Plant Science 13:1032480

doi: 10.3389/fpls.2022.1032480
[29]

Wang H, Wang Y, Jiang D, Xiang Z, Wang S, et al. 2022. Soil microbe inoculation alters the bacterial communities and promotes root growth of Atractylodes lancea under heat stress. Plant and Soil 478(1):371−89

doi: 10.1007/s11104-022-05369-6
[30]

Cao L, Chen F, Dai C. 2022. Effects of interaction signals between Atractylodes lancea and endophytes on its active components. Journal of Agro-Environment Science 41(12):2831−39 (in Chinese)

doi: 10.11654/jaes.2022-1006
[31]

Fang F, Dai CC, Zhang B, Liang Q. 2009. Establishment of Atractylodes lancea suspension cell line and effects of endophytic fungal elicitors on its volatile oil accumulation. Chinese Traditional and Herbal Drugs 40(3):452−55 (in Chinese)

doi: 10.3321/j.issn:0253-2670.2009.03.035
[32]

Zhang C, Wang S, Sun J, Li X, Wang H, et al. 2024. Genome resequencing reveals the genetic basis of population evolution, local adaptation, and rewiring of the rhizome metabolome in Atractylodes lancea. Horticulture Research 11:uhae167

doi: 10.1093/hr/uhae167
[33]

Zhao H, He Y, Zhang K, Li S, Chen Y, et al. 2023. Rewiring of the seed metabolome during Tartary buckwheat domestication. Plant Biotechnology Journal 21(1):150−64

doi: 10.1111/pbi.13932
[34]

Li YH, Li D, Jiao YQ, Schnable JC, Li YF, et al. 2020. Identification of loci controlling adaptation in Chinese soya bean landraces via a combination of conventional and bioclimatic GWAS. Plant Biotechnology Journal 18(2):389−401

doi: 10.1111/pbi.13206
[35]

Zhang Z, Shi Q, Wang B, Ma A, Wang Y, et al. 2022. Jujube metabolome selection determined the edible properties acquired during domestication. The Plant Journa 109(5):1116−33

doi: 10.1111/tpj.15617
[36]

Li J, Huang JP, Sukumaran J, Knowles LL. 2018. Microevolutionary processes impact macroevolutionary patterns. BMC Evolutionary Biology 18:123

doi: 10.1186/s12862-018-1236-8
[37]

Luo H, Zhao Y, Hua H, Zhang Y, Zhang X, et al. 2021. Research progress on quality assurance of genuine Chinese medicinal in Sichuan. Chinese Medicine 16:19

doi: 10.1186/s13020-021-00428-z
[38]

Sun X, Guo J, Ge Y, Xia B, Huang Y. 2012. Study of specific random amplification of polymorphic DNA-sequence characterized amplified region (RAPD-SCAR) marker for the endangered Chinese endemic herb Atractylodes lancea. Journal of Medicinal Plants Research 6(21):3774−80

doi: 10.5897/jmpr12.327
[39]

Guo LP, Huang LQ, Jiang YX, Zhan YH. 2006. RAPD analysis on genetic structure of Atractylodes lancea. Chinese Pharmaceutical Journal 41(3):178−81 (in Chinese)

doi: 10.3321/j.issn:1001-2494.2006.03.007
[40]

Wang Y, Wang S, Liu Y, Yuan Q, Sun J, et al. 2021. Chloroplast genome variation and phylogenetic relationships of Atractylodes species. BMC Genomics 22:103

doi: 10.1186/s12864-021-07394-8
[41]

Liang H, Kong Y, Chen W, Wang X, Jia Z, et al. 2021. The quality of wild Salvia miltiorrhiza from Dao Di area in China and its correlation with soil parameters and climate factors. Phytochemical Analysis 32(3):318−25

doi: 10.1002/pca.2978
[42]

Blankenagel S, Eggels S, Frey M, Grill E, Bauer E, et al. 2022. Natural alleles of the abscisic acid catabolism gene ZmAbh4 modulate water use efficiency and carbon isotope discrimination in maize. The Plant Cell 34(10):3860−72

doi: 10.1093/plcell/koac200
[43]

Tan W, Chen J, Yue X, Chai S, Liu W, et al. 2023. The heat response regulators HSFA1s promote Arabidopsis thermomorphogenesis via stabilizing PIF4 during the day. Science Advances 9(44):eadh1738

doi: 10.1126/sciadv.adh1738
[44]

Friedrich T, Oberkofler V, Trindade I, Altmann S, Brzezinka K, et al. 2021. Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nature Communications 12:3426

doi: 10.1038/s41467-021-23786-6
[45]

Lu QJ, Chao JG, Gu W, Zhang WM, Sang XH. 2019. Effects of copperstress on the accumulation of three pharmacodynamic componentsand the expression of two key enzyme genes in biosynthesis of Atracty-lodes lancea. Chinese Traditional and Herbal Drugs 50(3):710−15 (in Chinese)

[46]

Yang Z, Li X, Yang L, Peng S, Song W, et al. 2023. Comparative genomics reveals the diversification of triterpenoid biosynthesis and origin of ocotillol-type triterpenes in Panax. Plant Communications 4(4):100591

doi: 10.1016/j.xplc.2023.100591
[47]

Han Z, Xu Z, Xu Y, Lin J, Chen X, et al. 2024. Phylogenomics reveal DcTPS-mediated terpenoid accumulation and environmental response in Dendrobium catenatum. Industrial Crops and Products 208:117799

doi: 10.1016/j.indcrop.2023.117799
[48]

Wu J, Hu J, Yu H, Lu J, Jiang L, et al. 2023. Full-length transcriptome analysis of two chemotype and functional characterization of genes related to sesquiterpene biosynthesis in Atractylodes lancea. International Journal of Biological Macromolecules 225:1543−54

doi: 10.1016/j.ijbiomac.2022.11.210
[49]

Feng LF, Wang S, Zhang CC, Wang HY, Guo XZ, et al. 2024. Research progress on biosynthesis of sesquiterpenoids in Atractylodes lancea. China Journal of Chinese Materia Medica 49(21):5829−34

doi: 10.19540/j.cnki.cjcmm.20240813.104
[50]

Zhang C, Cao Y, Lin H, Wang Y, Wan X, et al. 2025. Identification of candidate genes in sesquiterpenoid biosynthesis of Atractylodes lancea through combined metabolomic and transcriptomic analysis. Plant Physiology and Biochemistry 224:109822

doi: 10.1016/j.plaphy.2025.109822
[51]

Ramakrishna A, Ravishankar GA. 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior 6(11):1720−31

doi: 10.4161/psb.6.11.17613
[52]

Yang L, Wen KS, Ruan X, Zhao YX, Wei F, et al. 2018. Response of plant secondary metabolites to environmental factors. Molecules 23(4):762

doi: 10.3390/molecules23040762
[53]

Qaderi MM, Martel AB, Strugnell CA. 2023. Environmental factors regulate plant secondary metabolites. Plants 12(3):447

doi: 10.3390/plants12030447
[54]

Li Y, Kong D, Fu Y, Sussman MR, Wu H. 2020. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistr 148:80−89

doi: 10.1016/j.plaphy.2020.01.006
[55]

Sun J, Weng LL, Xiao CP, Zhou XL, Jiang YX. 2021. Effects of drought stress on accumulation of three sesquiterpenoids and gene expression of key enzymes in biosynthesis of Atractylodes chinensis. Journal of Chinese Medicinal Materials 44(04):812−17

doi: 10.13863/j.issn1001-4454.2021.04.008
[56]

Li M, Chao J, Guo J, Gu W, Hou HR, et al. 2015. Effects of high-temperature stress onphotosynthetic characteristics and physiological indexes of Atractylodes lancea (Thunb.) DC. from different producing areas. Journal of Southern Agriculture 46(9):1651−57

[57]

Li MY, Chao JG, Gu W, Hou HR. 2015. Effects of high temperature stress on chlorophyll fluorescence characteristics of Atractylodes lancea from different habitats. Plant Physiology Journal 51(11):1861−66

doi: 10.13592/j.cnki.ppj.2015.0276
[58]

Jiang D, Lin H, Liu Z, Qi K, Zhang W, et al. 2025. Polyacetylenes and sesquiterpenes in Chinese traditional herb Atractylodes lancea: biomarkers and synergistic effects in red secretory cavities. Molecular Horticulture 5:11

doi: 10.1186/s43897-024-00130-2