| [1] |
Li Y, Ma J, Pan R, Wang T. 2024. Hydrogen production from Fraxinus mandshurica solid wood waste using FeCl3 as a non-precious metal Lewis acid catalyst: a comprehensive utilization approach. |
| [2] |
Liu XY, Timar MC, Varodi AM. 2019. A comparative study on the artificial UV and natural ageing of beeswax and Chinese wax and influence of wax finishing on the ageing of Chinese Ash (Fraxinus mandshurica) wood surfaces. |
| [3] |
FAO. 2024. The State of the World's Forests 2024 – Forest-sector innovations towards a more sustainable future. FAO Rome, Italy |
| [4] |
Pan Y, Birdsey RA, Phillips OL, Houghton RA, Fang J, et al. 2024. The enduring world forest carbon sink. |
| [5] |
Sterck L, Rombauts S, Jansson S, Sterky F, Rouzé P, et al. 2005. EST data suggest that poplar is an ancient polyploid. |
| [6] |
Li JF, Norville JE, Aach J, McCormack M, Zhang D, et al. 2013. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. |
| [7] |
Miao J, Guo D, Zhang J, Huang Q, Qin G, et al. 2013. Targeted mutagenesis in rice using CRISPR-Cas system. |
| [8] |
Shan Q, Wang Y, Li J, Gao C. 2014. Genome editing in rice and wheat using the CRISPR/Cas system. |
| [9] |
Svitashev S, Schwartz C, Lenderts B, Young JK, Mark Cigan A. 2016. Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. |
| [10] |
Chaudhuri A, Halder K, Datta A. 2022. Classification of CRISPR/Cas system and its application in tomato breeding. |
| [11] |
Livneh Y, Leor-Librach E, Agmon D, Makov-Bouaniche T, Tiwari V, et al. 2025. Combined enhancement of ascorbic acid, β-carotene and zeaxanthin in gene-edited lettuce. |
| [12] |
Prasad K, Gadeela H, Bommineni PR, Reddy PS, Tyagi W, et al. 2024. CRISPR/Cas9-mediated mutagenesis of phytoene desaturase in pigeonpea and groundnut. |
| [13] |
Su J, Jiang J, Zhang F, Liu Y, Ding L, et al. 2019. Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. |
| [14] |
Xu S, Li F, Zhou F, Li J, Cai S, et al. 2024. Efficient targeted mutagenesis in tetraploid Pogostemon cablin by the CRISPR/Cas9-mediated genomic editing system. |
| [15] |
Thapliyal G, Bhandari MS, Vemanna RS, Pandey S, Meena RK, et al. 2023. Engineering traits through CRISPR/cas genome editing in woody species to improve forest diversity and yield. |
| [16] |
Sulis DB, Jiang X, Yang C, Marques BM, Matthews ML, et al. 2023. Multiplex CRISPR editing of wood for sustainable fiber production. |
| [17] |
Liu Y, Li G, Mao Y, Gao Y, Zhao M, et al. 2024. Genome-edited trees for high-performance engineered wood. |
| [18] |
Yu J, Zhou C, Li D, Li S, Lin YCJ, et al. 2022. A PtrLBD39-mediated transcriptional network regulates tension wood formation in Populus trichocarpa. |
| [19] |
Nayeri S, Baghban Kohnehrouz B, Ahmadikhah A, Mahna N. 2022. CRISPR/Cas9-mediated P-CR domain-specific engineering of CESA4 heterodimerization capacity alters cell wall architecture and improves saccharification efficiency in poplar. |
| [20] |
Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. |
| [21] |
Friedland AE, Tzur YB, Esvelt KM, Colaiácovo MP, Church GM, et al. 2013. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. |
| [22] |
Lowder LG, Zhang D, Baltes NJ, Paul JW III, Tang X, et al. 2015. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. |
| [23] |
Mao Y, Zhang H, Xu N, Zhang B, Gou F, et al. 2013. Application of the CRISPR-Cas system for efficient genome engineering in plants. |
| [24] |
Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, et al. 2015. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. |
| [25] |
Cheng D, Liu Y, Wang Y, Cao L, Wu S, et al. 2024. Establishment of high-efficiency genome editing in white birch (Betula platyphylla Suk.). |
| [26] |
Di YH, Sun XJ, Hu Z, Jiang QY, Song GH, et al. 2019. Enhancing the CRISPR/Cas9 system based on multiple GmU6 promoters in soybean. |
| [27] |
Long L, Guo DD, Gao W, Yang WW, Hou LP, et al. 2018. Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. |
| [28] |
Ren C, Liu Y, Guo Y, Duan W, Fan P, et al. 2021. Optimizing the CRISPR/Cas9 system for genome editing in grape by using grape promoters. |
| [29] |
Senthil K, Rathinam M, Parashar M, Dokka N, Tyagi S, et al. 2025. Establishing a CRISPR/Cas9 genome editing framework in pigeonpea (Cajanus cajan L.) by targeting phytoene desaturase (PDS) gene disruption. |
| [30] |
Zhang S, Wu S, Hu C, Yang Q, Dong T, et al. 2022. Increased mutation efficiency of CRISPR/Cas9 genome editing in banana by optimized construct. |
| [31] |
Shan Q, Wang Y, Li J, Zhang Y, Chen K, et al. 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. |
| [32] |
Xia X, Li S, Wang N, Cheng P, Zhu B, et al. 2025. Convenient, high-efficiency multiplex genome editing in autotetraploid alfalfa using endogenous U6 promoters and visual reporters. |
| [33] |
Wang ZP, Xing HL, Dong L, Zhang HY, Han CY, et al. 2015. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. |
| [34] |
Yan L, Wei S, Wu Y, Hu R, Li H, et al. 2015. High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system. |
| [35] |
Feng C, Su H, Bai H, Wang R, Liu Y, et al. 2018. High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. |
| [36] |
Hashimoto R, Ueta R, Abe C, Osakabe Y, Osakabe K. 2018. Efficient multiplex genome editing induces precise, and self-ligated type mutations in tomato plants. |
| [37] |
Zhang F, LeBlanc C, Irish VF, Jacob Y. 2017. Rapid and efficient CRISPR/Cas9 gene editing in Citrus using the YAO promoter. |
| [38] |
Qin G, Gu H, Ma L, Peng Y, Deng XW, et al. 2007. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. |
| [39] |
Feng Y, Sun Y, Zhang H, Guo X, Feng Y, et al. 2025. Increased genome editing efficiency in poplar by optimizing sgRNA length and copy number. |
| [40] |
Ma M, Zhang C, Yu L, Yang J, Li C. 2024. CRISPR/Cas9 ribonucleoprotein mediated DNA-free genome editing in larch. |
| [41] |
Wu L, Yang J, Gu Y, Wang Q, Zhang Z, et al. 2025. Bamboo mosaic virus-mediated transgene-free genome editing in bamboo. |
| [42] |
Wang Z, He Z, Qu M, Liu Z, Wang C, et al. 2021. A method for determining the cutting efficiency of the CRISPR/Cas system in birch and poplar. |
| [43] |
Qi F, Tang M, Wang W, Liu L, Cao Y, et al. 2022. In vitro adventitious shoot regeneration system for Agrobacterium-mediated genetic transformation of Fraxinus mandshurica Rupr. |
| [44] |
Liang N, Zhan Y, Yu L, Wang Z, Zeng F. 2019. Characteristics and expression analysis of FmTCP15 under abiotic stresses and hormones and interact with DELLA protein in Fraxinus mandshurica Rupr. |
| [45] |
Lu H, Zhang H, Wang P, Chen M, Liang R, et al. 2025. Development of a xylem protoplast expression system for gene function analysis and genome editing in Fraxinus mandshurica Rupr. |
| [46] |
Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, et al. 2015. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. |
| [47] |
Xing JX, Luo AJ, Wang XH, Ding Q, Yang L, et al. 2025. Identification of U6 promoter and establishment of gene-editing system in Larix kaempferi (Lamb.) Carr. |
| [48] |
Zhu X, Xu W, Liu B, Zhan Y, Xia T. 2023. Adaptation of high-efficiency CRISPR/Cas9-based multiplex genome editing system in white lupin by using endogenous promoters. |
| [49] |
Raha D, Wang Z, Moqtaderi Z, Wu L, Zhong G, et al. 2010. Close association of RNA polymerase II and many transcription factors with Pol III genes. |
| [50] |
Gao Z, Herrera-Carrillo E, Berkhout B. 2018. RNA polymerase II activity of type 3 Pol III promoters. |
| [51] |
Simmen KA, Mattaj IW. 1990. Complex requirements for RNA poIymerase III transcription of the Xenopus U6 promoter. |
| [52] |
Roberts S, Colbert T, Hahn S. 1995. TFIIIC determines RNA polymerase III specificity at the TATA-containing yeast U6 promoter. |
| [53] |
Rumi M, Ishihara S, Aziz M, Kazumori H, Ishimura N, et al. 2006. RNA polymerase II mediated transcription from the polymerase III promoters in short hairpin RNA expression vector. |
| [54] |
Li X, Jiang DH, Yong K, Zhang DB. 2007. Varied transcriptional efficiencies of multiple Arabidopsis U6 small nuclear RNA genes. |
| [55] |
Luo P, Li S, Li L, Li Y, Qiao Y, et al. 2024. Validation of endogenous U6 promoters for expanding the CRISPR toolbox in Nicotiana tabacum. |
| [56] |
Wang C, Li Y, Wang N, Yu Q, Li Y, et al. 2023. An efficient CRISPR/Cas9 platform for targeted genome editing in rose (Rosa hybrida). |
| [57] |
Syombua ED, Zhang Z, Tripathi JN, Ntui VO, Kang M, et al. 2021. A CRISPR/Cas9-based genome-editing system for yam (Dioscorea spp.). |
| [58] |
Zafar K, Khan MZ, Amin I, Mukhtar Z, Yasmin S, et al. 2020. Precise CRISPR-Cas9 mediated genome editing in super basmati rice for resistance against bacterial blight by targeting the major susceptibility gene. |
| [59] |
Eid A, Ali Z, Mahfouz MM. 2016. High efficiency of targeted mutagenesis in Arabidopsis via meiotic promoter-driven expression of Cas9 endonuclease. |
| [60] |
Osakabe Y, Watanabe T, Sugano SS, Ueta R, Ishihara R, et al. 2016. Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. |
| [61] |
Zhu J, Song N, Sun S, Yang W, Zhao H, et al. 2016. Efficiency and inheritance of targeted mutagenesis in maize using CRISPR-Cas9. |
| [62] |
Bruegmann T, Deecke K, Fladung M. 2019. Evaluating the efficiency of gRNAs in CRISPR/Cas9 mediated genome editing in poplars. |
| [63] |
Dang Y, Jia G, Choi J, Ma H, Anaya E, et al. 2015. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. |
| [64] |
Kim HK, Kim Y, Lee S, Min S, Bae JY, et al. 2019. SpCas9 activity prediction by DeepSpCas9, a deep learning-based model with high generalization performance. |
| [65] |
Xie X, Ma X, Zhu Q, Zeng D, Li G, et al. 2017. CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. |
| [66] |
Liu H, Ding Y, Zhou Y, Jin W, Xie K, et al. 2017. CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. |
| [67] |
Kannan B, Jung JH, Moxley GW, Lee SM, Altpeter F. 2018. TALEN-mediated targeted mutagenesis of more than 100 COMT copies/alleles in highly polyploid sugarcane improves saccharification efficiency without compromising biomass yield. |
| [68] |
Illa-Berenguer E, LaFayette PR, Parrott WA. 2023. Editing efficiencies with Cas9 orthologs, Cas12a endonucleases, and temperature in rice. |
| [69] |
LeBlanc C, Zhang F, Mendez J, Lozano Y, Chatpar K, et al. 2018. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. |
| [70] |
Xiang G, Zhang X, An C, Cheng C, Wang H. 2017. Temperature effect on CRISPR-Cas9 mediated genome editing. |
| [71] |
Gao S, Chen X, Lin M, Yin Y, Li X, et al. 2024. A birch ELONGATED HYPOCOTYL 5 gene enhances UV-B and drought tolerance. |
| [72] |
Borthakur D, Busov V, Cao XH, Du Q, Gailing O, et al. 2022. Current status and trends in forest genomics. |
| [73] |
Fister AS, Landherr L, Maximova SN, Guiltinan MJ. 2018. Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. |
| [74] |
Sun S, Han X, Jin R, Jiao J, Wang J, et al. 2024. Generation of CRISPR-edited birch plants without DNA integration using Agrobacterium-mediated transformation technology. |
| [75] |
An Y, Dong H, Zhao W, Shen H, Yang L, et al. 2023. A stable and efficient genetic transformation method for embryogenic callus of Fraxinus mandshurica. |
| [76] |
Chen L, Li W, Katin-Grazzini L, Ding J, Gu X, et al. 2018. A method for the production and expedient screening of CRISPR/Cas9-mediated non-transgenic mutant plants. |
| [77] |
Hoengenaert L, Anders C, Van Doorsselaere J, Vanholme R, Boerjan W. 2025. Transgene-free genome editing in poplar. |