[1]

Li Y, Ma J, Pan R, Wang T. 2024. Hydrogen production from Fraxinus mandshurica solid wood waste using FeCl3 as a non-precious metal Lewis acid catalyst: a comprehensive utilization approach. Renewable Energy 230:120810

doi: 10.1016/j.renene.2024.120810
[2]

Liu XY, Timar MC, Varodi AM. 2019. A comparative study on the artificial UV and natural ageing of beeswax and Chinese wax and influence of wax finishing on the ageing of Chinese Ash (Fraxinus mandshurica) wood surfaces. Journal of Photochemistry and Photobiology B: Biology 201:111607

doi: 10.1016/j.jphotobiol.2019.111607
[3]

FAO. 2024. The State of the World's Forests 2024 – Forest-sector innovations towards a more sustainable future. FAO Rome, Italy

[4]

Pan Y, Birdsey RA, Phillips OL, Houghton RA, Fang J, et al. 2024. The enduring world forest carbon sink. Nature 631:563−69

doi: 10.1038/s41586-024-07602-x
[5]

Sterck L, Rombauts S, Jansson S, Sterky F, Rouzé P, et al. 2005. EST data suggest that poplar is an ancient polyploid. New Phytologist 167:165−70

doi: 10.1111/j.1469-8137.2005.01378.x
[6]

Li JF, Norville JE, Aach J, McCormack M, Zhang D, et al. 2013. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology 31:688−91

doi: 10.1038/nbt.2654
[7]

Miao J, Guo D, Zhang J, Huang Q, Qin G, et al. 2013. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research 23:1233−36

doi: 10.1038/cr.2013.123
[8]

Shan Q, Wang Y, Li J, Gao C. 2014. Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols 9:2395−410

doi: 10.1038/nprot.2014.157
[9]

Svitashev S, Schwartz C, Lenderts B, Young JK, Mark Cigan A. 2016. Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nature Communications 7:13274

doi: 10.1038/ncomms13274
[10]

Chaudhuri A, Halder K, Datta A. 2022. Classification of CRISPR/Cas system and its application in tomato breeding. Theoretical and Applied Genetics 135:367−87

doi: 10.1007/s00122-021-03984-y
[11]

Livneh Y, Leor-Librach E, Agmon D, Makov-Bouaniche T, Tiwari V, et al. 2025. Combined enhancement of ascorbic acid, β-carotene and zeaxanthin in gene-edited lettuce. Plant Biotechnology Journal 23:1954−67

doi: 10.1111/pbi.70018
[12]

Prasad K, Gadeela H, Bommineni PR, Reddy PS, Tyagi W, et al. 2024. CRISPR/Cas9-mediated mutagenesis of phytoene desaturase in pigeonpea and groundnut. Functional & Integrative Genomics 24:57

doi: 10.1007/s10142-024-01336-9
[13]

Su J, Jiang J, Zhang F, Liu Y, Ding L, et al. 2019. Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. Horticulture Research 6:109

doi: 10.1038/s41438-019-0193-8
[14]

Xu S, Li F, Zhou F, Li J, Cai S, et al. 2024. Efficient targeted mutagenesis in tetraploid Pogostemon cablin by the CRISPR/Cas9-mediated genomic editing system. Horticulture Research 11:uhae021

doi: 10.1093/hr/uhae021
[15]

Thapliyal G, Bhandari MS, Vemanna RS, Pandey S, Meena RK, et al. 2023. Engineering traits through CRISPR/cas genome editing in woody species to improve forest diversity and yield. Critical Reviews in Biotechnology 43:884−903

doi: 10.1080/07388551.2022.2092714
[16]

Sulis DB, Jiang X, Yang C, Marques BM, Matthews ML, et al. 2023. Multiplex CRISPR editing of wood for sustainable fiber production. Science 381:216−21

doi: 10.1126/science.add4514
[17]

Liu Y, Li G, Mao Y, Gao Y, Zhao M, et al. 2024. Genome-edited trees for high-performance engineered wood. Matter 7:3658−71

doi: 10.1016/j.matt.2024.07.003
[18]

Yu J, Zhou C, Li D, Li S, Lin YCJ, et al. 2022. A PtrLBD39-mediated transcriptional network regulates tension wood formation in Populus trichocarpa. Plant communications 3:100250

doi: 10.1016/j.xplc.2021.100250
[19]

Nayeri S, Baghban Kohnehrouz B, Ahmadikhah A, Mahna N. 2022. CRISPR/Cas9-mediated P-CR domain-specific engineering of CESA4 heterodimerization capacity alters cell wall architecture and improves saccharification efficiency in poplar. Plant Biotechnology Journal 20:1197−212

doi: 10.1111/pbi.13803
[20]

Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262−78

doi: 10.1016/j.cell.2014.05.010
[21]

Friedland AE, Tzur YB, Esvelt KM, Colaiácovo MP, Church GM, et al. 2013. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nature Methods 10:741−43

doi: 10.1038/nmeth.2532
[22]

Lowder LG, Zhang D, Baltes NJ, Paul JW III, Tang X, et al. 2015. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiology 169:971−85

doi: 10.1104/pp.15.00636
[23]

Mao Y, Zhang H, Xu N, Zhang B, Gou F, et al. 2013. Application of the CRISPR-Cas system for efficient genome engineering in plants. Molecular Plant 6:2008−11

doi: 10.1093/mp/sst121
[24]

Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, et al. 2015. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology 169:931−45

doi: 10.1104/pp.15.00793
[25]

Cheng D, Liu Y, Wang Y, Cao L, Wu S, et al. 2024. Establishment of high-efficiency genome editing in white birch (Betula platyphylla Suk.). Plant Biotechnology Journal 22:7−9

doi: 10.1111/pbi.14176
[26]

Di YH, Sun XJ, Hu Z, Jiang QY, Song GH, et al. 2019. Enhancing the CRISPR/Cas9 system based on multiple GmU6 promoters in soybean. Biochemical and Biophysical Research Communications 519:819−23

doi: 10.1016/j.bbrc.2019.09.074
[27]

Long L, Guo DD, Gao W, Yang WW, Hou LP, et al. 2018. Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods 14:85

doi: 10.1186/s13007-018-0353-0
[28]

Ren C, Liu Y, Guo Y, Duan W, Fan P, et al. 2021. Optimizing the CRISPR/Cas9 system for genome editing in grape by using grape promoters. Horticulture Research 8:52

doi: 10.1038/s41438-021-00489-z
[29]

Senthil K, Rathinam M, Parashar M, Dokka N, Tyagi S, et al. 2025. Establishing a CRISPR/Cas9 genome editing framework in pigeonpea (Cajanus cajan L.) by targeting phytoene desaturase (PDS) gene disruption. Journal of Genetic Engineering and Biotechnology 23:100465

doi: 10.1016/j.jgeb.2025.100465
[30]

Zhang S, Wu S, Hu C, Yang Q, Dong T, et al. 2022. Increased mutation efficiency of CRISPR/Cas9 genome editing in banana by optimized construct. PeerJ 10:e12664

doi: 10.7717/peerj.12664
[31]

Shan Q, Wang Y, Li J, Zhang Y, Chen K, et al. 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology 31:686−88

doi: 10.1038/nbt.2650
[32]

Xia X, Li S, Wang N, Cheng P, Zhu B, et al. 2025. Convenient, high-efficiency multiplex genome editing in autotetraploid alfalfa using endogenous U6 promoters and visual reporters. aBIOTECH 6:81−90

doi: 10.1007/s42994-025-00200-z
[33]

Wang ZP, Xing HL, Dong L, Zhang HY, Han CY, et al. 2015. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biology 16:144

doi: 10.1186/s13059-015-0715-0
[34]

Yan L, Wei S, Wu Y, Hu R, Li H, et al. 2015. High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Molecular Plant 8:1820−23

doi: 10.1016/j.molp.2015.10.004
[35]

Feng C, Su H, Bai H, Wang R, Liu Y, et al. 2018. High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. Plant Biotechnology Journal 16:1848−57

doi: 10.1111/pbi.12920
[36]

Hashimoto R, Ueta R, Abe C, Osakabe Y, Osakabe K. 2018. Efficient multiplex genome editing induces precise, and self-ligated type mutations in tomato plants. Frontiers in Plant Science 9:916

doi: 10.3389/fpls.2018.00916
[37]

Zhang F, LeBlanc C, Irish VF, Jacob Y. 2017. Rapid and efficient CRISPR/Cas9 gene editing in Citrus using the YAO promoter. Plant Cell Reports 36:1883−87

doi: 10.1007/s00299-017-2202-4
[38]

Qin G, Gu H, Ma L, Peng Y, Deng XW, et al. 2007. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Research 17:471−82

doi: 10.1038/cr.2007.40
[39]

Feng Y, Sun Y, Zhang H, Guo X, Feng Y, et al. 2025. Increased genome editing efficiency in poplar by optimizing sgRNA length and copy number. Industrial Crops and Products 226:120664

doi: 10.1016/j.indcrop.2025.120664
[40]

Ma M, Zhang C, Yu L, Yang J, Li C. 2024. CRISPR/Cas9 ribonucleoprotein mediated DNA-free genome editing in larch. Forestry Research 4:e036

doi: 10.48130/forres-0024-0033
[41]

Wu L, Yang J, Gu Y, Wang Q, Zhang Z, et al. 2025. Bamboo mosaic virus-mediated transgene-free genome editing in bamboo. New Phytologist 245:1810−16

doi: 10.1111/nph.20386
[42]

Wang Z, He Z, Qu M, Liu Z, Wang C, et al. 2021. A method for determining the cutting efficiency of the CRISPR/Cas system in birch and poplar. Forestry Research 1:16

doi: 10.48130/FR-2021-0016
[43]

Qi F, Tang M, Wang W, Liu L, Cao Y, et al. 2022. In vitro adventitious shoot regeneration system for Agrobacterium-mediated genetic transformation of Fraxinus mandshurica Rupr. Trees 36:1387−99

doi: 10.1007/s00468-022-02302-3
[44]

Liang N, Zhan Y, Yu L, Wang Z, Zeng F. 2019. Characteristics and expression analysis of FmTCP15 under abiotic stresses and hormones and interact with DELLA protein in Fraxinus mandshurica Rupr. Forests 10:343

doi: 10.3390/f10040343
[45]

Lu H, Zhang H, Wang P, Chen M, Liang R, et al. 2025. Development of a xylem protoplast expression system for gene function analysis and genome editing in Fraxinus mandshurica Rupr. Industrial Crops and Products 225:120446

doi: 10.1016/j.indcrop.2024.120446
[46]

Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, et al. 2015. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant 8:1274−84

doi: 10.1016/j.molp.2015.04.007
[47]

Xing JX, Luo AJ, Wang XH, Ding Q, Yang L, et al. 2025. Identification of U6 promoter and establishment of gene-editing system in Larix kaempferi (Lamb.) Carr. Plants 14:45

doi: 10.3390/plants14010045
[48]

Zhu X, Xu W, Liu B, Zhan Y, Xia T. 2023. Adaptation of high-efficiency CRISPR/Cas9-based multiplex genome editing system in white lupin by using endogenous promoters. Physiologia Plantarum 175:e13976

doi: 10.1111/ppl.13976
[49]

Raha D, Wang Z, Moqtaderi Z, Wu L, Zhong G, et al. 2010. Close association of RNA polymerase II and many transcription factors with Pol III genes. Proceedings of the National Academy of Sciences of the United States of America 107:3639−44

doi: 10.1073/pnas.0911315106
[50]

Gao Z, Herrera-Carrillo E, Berkhout B. 2018. RNA polymerase II activity of type 3 Pol III promoters. Molecular Therapy Nucleic Acids 12:135−45

doi: 10.1016/j.omtn.2018.05.001
[51]

Simmen KA, Mattaj IW. 1990. Complex requirements for RNA poIymerase III transcription of the Xenopus U6 promoter. Nucleic Acids Research 18:5649−57

doi: 10.1093/nar/18.19.5649
[52]

Roberts S, Colbert T, Hahn S. 1995. TFIIIC determines RNA polymerase III specificity at the TATA-containing yeast U6 promoter. Genes & Development 9:832−42

doi: 10.1101/gad.9.7.832
[53]

Rumi M, Ishihara S, Aziz M, Kazumori H, Ishimura N, et al. 2006. RNA polymerase II mediated transcription from the polymerase III promoters in short hairpin RNA expression vector. Biochemical and Biophysical Research Communications 339:540−47

doi: 10.1016/j.bbrc.2005.11.037
[54]

Li X, Jiang DH, Yong K, Zhang DB. 2007. Varied transcriptional efficiencies of multiple Arabidopsis U6 small nuclear RNA genes. Journal of Integrative Plant Biology 49:222−29

doi: 10.1111/j.1744-7909.2007.00393.x
[55]

Luo P, Li S, Li L, Li Y, Qiao Y, et al. 2024. Validation of endogenous U6 promoters for expanding the CRISPR toolbox in Nicotiana tabacum. In Vitro Cellular & Developmental Biology-Plant 60:378−83

doi: 10.1007/s11627-024-10418-z
[56]

Wang C, Li Y, Wang N, Yu Q, Li Y, et al. 2023. An efficient CRISPR/Cas9 platform for targeted genome editing in rose (Rosa hybrida). Journal of Integrative Plant Biology 65:895−99

doi: 10.1111/jipb.13421
[57]

Syombua ED, Zhang Z, Tripathi JN, Ntui VO, Kang M, et al. 2021. A CRISPR/Cas9-based genome-editing system for yam (Dioscorea spp.). Plant Biotechnology Journal 19:645−47

doi: 10.1111/pbi.13515
[58]

Zafar K, Khan MZ, Amin I, Mukhtar Z, Yasmin S, et al. 2020. Precise CRISPR-Cas9 mediated genome editing in super basmati rice for resistance against bacterial blight by targeting the major susceptibility gene. Frontiers in Plant Science 11:575

doi: 10.3389/fpls.2020.00575
[59]

Eid A, Ali Z, Mahfouz MM. 2016. High efficiency of targeted mutagenesis in Arabidopsis via meiotic promoter-driven expression of Cas9 endonuclease. Plant Cell Reports 35:1555−58

doi: 10.1007/s00299-016-2000-4
[60]

Osakabe Y, Watanabe T, Sugano SS, Ueta R, Ishihara R, et al. 2016. Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Scientific Reports 6:26685

doi: 10.1038/srep26685
[61]

Zhu J, Song N, Sun S, Yang W, Zhao H, et al. 2016. Efficiency and inheritance of targeted mutagenesis in maize using CRISPR-Cas9. Journal of Genetics and Genomics 43:25−36

doi: 10.1016/j.jgg.2015.10.006
[62]

Bruegmann T, Deecke K, Fladung M. 2019. Evaluating the efficiency of gRNAs in CRISPR/Cas9 mediated genome editing in poplars. International Journal of Molecular Sciences 20:3623

doi: 10.3390/ijms20153623
[63]

Dang Y, Jia G, Choi J, Ma H, Anaya E, et al. 2015. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biology 16:280

doi: 10.1186/s13059-015-0846-3
[64]

Kim HK, Kim Y, Lee S, Min S, Bae JY, et al. 2019. SpCas9 activity prediction by DeepSpCas9, a deep learning-based model with high generalization performance. Science Advances 5:eaax9249

doi: 10.1126/sciadv.aax9249
[65]

Xie X, Ma X, Zhu Q, Zeng D, Li G, et al. 2017. CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. Molecular Plant 10:1246−49

doi: 10.1016/j.molp.2017.06.004
[66]

Liu H, Ding Y, Zhou Y, Jin W, Xie K, et al. 2017. CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Molecular Plant 10:530−32

doi: 10.1016/j.molp.2017.01.003
[67]

Kannan B, Jung JH, Moxley GW, Lee SM, Altpeter F. 2018. TALEN-mediated targeted mutagenesis of more than 100 COMT copies/alleles in highly polyploid sugarcane improves saccharification efficiency without compromising biomass yield. Plant Biotechnology Journal 16:856−66

doi: 10.1111/pbi.12833
[68]

Illa-Berenguer E, LaFayette PR, Parrott WA. 2023. Editing efficiencies with Cas9 orthologs, Cas12a endonucleases, and temperature in rice. Frontiers in Genome Editing 5:1074641

doi: 10.3389/fgeed.2023.1074641
[69]

LeBlanc C, Zhang F, Mendez J, Lozano Y, Chatpar K, et al. 2018. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. The Plant Journal 93:377−86

doi: 10.1111/tpj.13782
[70]

Xiang G, Zhang X, An C, Cheng C, Wang H. 2017. Temperature effect on CRISPR-Cas9 mediated genome editing. Journal of Genetics and Genomics 44:199−205

doi: 10.1016/j.jgg.2017.03.004
[71]

Gao S, Chen X, Lin M, Yin Y, Li X, et al. 2024. A birch ELONGATED HYPOCOTYL 5 gene enhances UV-B and drought tolerance. Forestry Research 4:e022

doi: 10.48130/forres-0024-0019
[72]

Borthakur D, Busov V, Cao XH, Du Q, Gailing O, et al. 2022. Current status and trends in forest genomics. Forestry Research 2:11

doi: 10.48130/FR-2022-0011
[73]

Fister AS, Landherr L, Maximova SN, Guiltinan MJ. 2018. Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Frontiers in Plant Science 9:268

doi: 10.3389/fpls.2018.00268
[74]

Sun S, Han X, Jin R, Jiao J, Wang J, et al. 2024. Generation of CRISPR-edited birch plants without DNA integration using Agrobacterium-mediated transformation technology. Plant Science 342:112029

doi: 10.1016/j.plantsci.2024.112029
[75]

An Y, Dong H, Zhao W, Shen H, Yang L, et al. 2023. A stable and efficient genetic transformation method for embryogenic callus of Fraxinus mandshurica. Forests 14:957

doi: 10.3390/f14050957
[76]

Chen L, Li W, Katin-Grazzini L, Ding J, Gu X, et al. 2018. A method for the production and expedient screening of CRISPR/Cas9-mediated non-transgenic mutant plants. Horticulture Research 5:13

doi: 10.1038/s41438-018-0023-4
[77]

Hoengenaert L, Anders C, Van Doorsselaere J, Vanholme R, Boerjan W. 2025. Transgene-free genome editing in poplar. New Phytologist 247:224−32

doi: 10.1111/nph.20415