[1]

Hernández-Huerta J, Tamez-Guerra P, Gomez-Flores R, Delgado-Gardea MCE, Robles-Hernández L, et al. 2023. Pepper growth promotion and biocontrol against Xanthomonas euvesicatoria by Bacillus cereus and Bacillus thuringiensis formulations. PeerJ 11:e14633

doi: 10.7717/peerj.14633
[2]

Kamoun S, Furzer O, Jones JDG, Judelson HS, Ali GS, et al. 2015. The Top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology 16:413−34

doi: 10.1111/mpp.12190
[3]

Parada-Rojas CH, Granke LL, Naegele RP, Hansen Z, Hausbeck MK, et al. 2021. A diagnostic guide for Phytophthora capsici infecting vegetable crops. Plant Health Progress 22:404−14

doi: 10.1094/PHP-02-21-0027-FI
[4]

Leonian LH. 1922. Stem and fruit blight of peppers caused by Phytophthora capsici sp. nov. Phytopathology 12:401−8

[5]

Quesada-Ocampo LM, Parada-Rojas CH, Hansen Z, Vogel G, Smart C, et al. 2023. Phytophthora capsici: recent progress on fundamental biology and disease management 100 years after its description. Annual Review of Phytopathology 61:185−208

doi: 10.1146/annurev-phyto-021622-103801
[6]

Lamour KH, Mudge J, Gobena D, Hurtado-Gonzales OP, Schmutz J, et al. 2012. Genome sequencing and mapping reveal loss of heterozygosity as a mechanism for rapid adaptation in the vegetable pathogen Phytophthora capsici. Molecular Plant-Microbe Interactions 25:1350−60

doi: 10.1094/MPMI-02-12-0028-R
[7]

Dunn AR, Smart CD. 2015. Interactions of Phytophthora capsici with resistant and susceptible pepper roots and stems. Phytopathology 105:1355−61

doi: 10.1094/PHYTO-02-15-0045-R
[8]

Granke LL, Windstam ST, Hoch HC, Smart CD, Hausbeck MK. 2009. Dispersal and movement mechanisms of Phytophthora capsici sporangia. Phytopathology 99:1258−64

doi: 10.1094/PHYTO-99-11-1258
[9]

Hausbeck MK, Lamour KH. 2004. Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Disease 88:1292−303

doi: 10.1094/PDIS.2004.88.12.1292
[10]

Long M, Wang Q, Li S, Liu C, Chen S, et al. 2023. Additive effect of the Streptomyces albus XJC2-1 and dimethomorph control pepper blight (Capsicum annuum L.). Pest Management Science 79:3871−82

doi: 10.1002/ps.7591
[11]

Sanogo S, Lamour K, Kousik CS, Lozada DN, Parada-Rojas CH, et al. 2023. Phytophthora capsici, 100 years later: research mile markers from 1922 to 2022. Phytopathology 113:921−30

doi: 10.1094/PHYTO-08-22-0297-RVW
[12]

Iribarren MJ, Steciow M, González B, Nardelli M. 2019. Prevalence and aetiology of Phytophthora fruit and stem rot of solanaceous and cucurbitaceous crops in the Pampas region of Argentina. Journal of Plant Pathology 101:481−89

doi: 10.1007/s42161-018-00221-2
[13]

Thind TS, Hollomon DW. 2018. Thiocarbamate fungicides: reliable tools in resistance management and future outlook. Pest Management Science 74:1547−51

doi: 10.1002/ps.4844
[14]

Guo Q, Li Y, Lou Y, Shi M, Jiang Y, et al. 2019. Bacillus amyloliquefaciens Ba13 induces plant systemic resistance and improves rhizosphere microecology against tomato yellow leaf curl virus disease. Applied Soil Ecology 137:154−66

doi: 10.1016/j.apsoil.2019.01.015
[15]

Rafiee M, Olia M, Nasr-Esfahani M, Mashayekhi P, Esfahani AN. 2025. Effects of growth promoting microorganisms on tomato growth parameters in interaction with root nematodes. Horticultural Plant Journal In Press

doi: 10.1016/j.hpj.2025.01.013
[16]

Volynchikova E, Kim KD. 2022. Biological control of oomycete soilborne diseases caused by Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae in solanaceous crops. Mycobiology 50:269−93

doi: 10.1080/12298093.2022.2136333
[17]

Li H, Cai X, Gong J, Xu T, Ding G, et al. 2019. Long-term organic farming manipulated rhizospheric microbiome and Bacillus antagonism against pepper blight. (Phytophthora capsici). Frontiers in Microbiology 10:342

doi: 10.3389/fmicb.2019.00342
[18]

Gond SK, Bergen MS, Torres MS, White JF, Jr. 2015. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiological Research 172:79−87

doi: 10.1016/j.micres.2014.11.004
[19]

Awan ZA, Shoaib A, Schenk PM, Ahmad A, Alansi S, et al. 2023. Antifungal potential of volatiles produced by Bacillus subtilis BS-01 against Alternaria solani in Solanum lycopersicum. Frontiers in Plant Science 13:1089562

doi: 10.3389/fpls.2022.1089562
[20]

Mnif I, Ghribi D. 2015. Potential of bacterial derived biopesticides in pest management. Crop Protection 77:52−64

doi: 10.1016/j.cropro.2015.07.017
[21]

Luo L, Zhao C, Wang E, Raza A, Yin C. 2022. Bacillus amyloliquefaciens as an excellent agent for biofertilizer and biocontrol in agriculture: an overview for its mechanisms. Microbiological Research 259:127016

doi: 10.1016/j.micres.2022.127016
[22]

Zhang M, Li J, Shen A, Tan S, Yan Z, et al. 2016. Isolation and identification of Bacillus amyloliquefaciens IBFCBF-1 with potential for biological control of Phytophthora blight and growth promotion of pepper. Journal of Phytopathology 164:1012−21

doi: 10.1111/jph.12522
[23]

Ngo VA, Wang SL, Nguyen VB, Doan CT, Tran TN, et al. 2020. Phytophthora antagonism of endophytic bacteria isolated from roots of black pepper (Piper nigrum L.). Agronomy 10:286

doi: 10.3390/agronomy10020286
[24]

Yang R, Fan X, Cai X, Hu F. 2015. The inhibitory mechanisms by mixtures of two endophytic bacterial strains isolated from Ginkgo biloba against pepper Phytophthora blight. Biological Control 85:59−67

doi: 10.1016/j.biocontrol.2014.09.013
[25]

Sun Z, Liu T, Liu Z, Zeng C, Liu Z. 2022. Screening of antagonistic bacteria against the blue mold of citrus fruit from soil by a new parallel screening method without prior isolation of single strains. Biological Control 176:105066

doi: 10.1016/j.biocontrol.2022.105066
[26]

Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, et al. 2009. Bergey's manual of systematic bacteriology, 2nd edition. Volume 3. New York: Springer. pp. 134−37. doi: 10.1007/978-0-387-68489-5

[27]

Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12:357−60

doi: 10.1038/nmeth.3317
[28]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[29]

Zhao W, Li W, Chi Y, Cao S, Dong L, et al. 2020. Occurrence of stem blight and fruit rot caused by Phytophthora capsici on Chinese cucumber (Trichosanthes kirilowii) in China. Plant Disease 105:232

doi: 10.1094/PDIS-06-20-1261-PDN
[30]

Zhai Y, Zhu JX, Tan TM, Xu JP, Shen AR, et al. 2021. Isolation and characterization of antagonistic Paenibacillus polymyxa HX-140 and its biocontrol potential against Fusarium wilt of cucumber seedlings. BMC Microbiology 21:75

doi: 10.1186/s12866-021-02131-3
[31]

Ongena M, Jacques P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology 16:115−25

doi: 10.1016/j.tim.2007.12.009
[32]

Tian D, Song X, Li C, Zhou W, Qin L, et al. 2021. Antifungal mechanism of Bacillus amyloliquefaciens strain GKT04 against Fusarium wilt revealed using genomic and transcriptomic analyses. MicrobiologyOpen 10:e1192

doi: 10.1002/mbo3.1192
[33]

Jiao R, Ahmed A, He P, Munir S, Wu Y, et al. 2023. Bacillus amyloliquefaciens induces resistance in tobacco against powdery mildew pathogen Erysiphe cichoracearum. Journal of Plant Growth Regulation 42:6636−51

doi: 10.1007/s00344-023-10922-3
[34]

Abdallah DB, Frikha-Gargouri O, Tounsi S. 2018. Rizhospheric competence, plant growth promotion and biocontrol efficacy of Bacillus amyloliquefaciens subsp. plantarum strain 32a. Biological Control 124:61−67

doi: 10.1016/j.biocontrol.2018.01.013
[35]

Wang SY, Herrera-Balandrano DD, Wang YX, Shi XC, Chen X, et al. 2022. Biocontrol ability of the Bacillus amyloliquefaciens group, B. amyloliquefaciens, B. velezensis, B. nakamurai, and B. siamensis, for the management of fungal postharvest diseases: a review. Journal of Agricultural and Food Chemistry 70:6591−616

doi: 10.1021/acs.jafc.2c01745
[36]

Nett JE, Andes DR. 2020. Contributions of the biofilm matrix to Candida pathogenesis. Journal of Fungi 6:21

doi: 10.3390/jof6010021
[37]

Zarnowski R, Westler WM, Lacmbouh GA, Marita JM, Bothe JR, et al. 2014. Novel entries in a fungal biofilm matrix encyclopedia. mBio 5:e01333-14

doi: 10.1128/mbio.01333-14
[38]

Lattif AA, Mukherjee PK, Chandra J, Roth MR, Welti R, et al. 2011. Lipidomics of Candida albicans biofilms reveals phase-dependent production of phospholipid molecular classes and role for lipid rafts in biofilm formation. Microbiology 157:3232−42

doi: 10.1099/mic.0.051086-0
[39]

Wang QH, Ji YP, Qu YY, Qi YK, Li DW, et al. 2020. The response strategies of Colletotrichum gloeosporioides s.s. due to the stress caused by biological control agent Bacillus amyloliquefaciens deciphered by transcriptome analyses. Biological Control 150:104372

doi: 10.1016/j.biocontrol.2020.104372
[40]

Liu D, Li K, Hu J, Wang W, Liu X, et al. 2019. Biocontrol and action mechanism of Bacillus amyloliquefaciens and Bacillus subtilis in soybean Phytophthora blight. International Journal of Molecular Sciences 20:2908

doi: 10.3390/ijms20122908
[41]

Huang J, Ji X. 2023. Never a dull enzyme, RNA polymerase II. Transcription 14:49−67

doi: 10.1080/21541264.2023.2208023
[42]

Turowski TW, Tollervey D. 2015. Cotranscriptional events in eukaryotic ribosome synthesis. Wiley Interdisciplinary Reviews: RNA 6:129−39

doi: 10.1002/wrna.1263
[43]

Ryu J, Lee C. 2024. RNA polymerase subunits and ribosomal proteins: an overview and their genetic impact on complex human traits. Frontiers in Bioscience 29(5):185

doi: 10.31083/j.fbl2905185
[44]

Hurt E, Cheng J, Baβler J, Iwasa J, Beckmann R. 2024. SnapShot: Eukaryotic ribosome biogenesis I. Cell 186:2282−2282.e1

doi: 10.1016/j.cell.2023.04.030
[45]

Han X, Shen D, Xiong Q, Bao B, Zhang W, et al. 2021. The plant-beneficial rhizobacterium Bacillus velezensis FZB42 controls the soybean pathogen Phytophthora sojae due to bacilysin production. Applied and Environmental Microbiology 87:e0160121

doi: 10.1128/AEM.01601-21
[46]

Li Y, Feng X, Wang X, Zheng L, Liu H. 2020. Inhibitory effects of Bacillus licheniformis BL06 on Phytophthora capsici in pepper by multiple modes of action. Biological Control 144:104210

doi: 10.1016/j.biocontrol.2020.104210
[47]

Lee BD, Dutta S, Ryu H, Yoo SJ, Suh DS, et al. 2015. Induction of systemic resistance in Panax ginseng against Phytophthora cactorum by native Bacillus amyloliquefaciens HK34. Journal of Ginseng Research 39:213−20

doi: 10.1016/j.jgr.2014.12.002
[48]

Apel, K, Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55:373−99

doi: 10.1146/annurev.arplant.55.031903.141701
[49]

Zhao Y, Hu K, Yao G, Wang S, Peng X, et al. 2023. D-cysteine desulfhydrase DCD1 participates in tomato resistance against Botrytis cinerea by modulating ROS homeostasis. Vegetable Research 3:21

doi: 10.48130/vr-2023-0021
[50]

Najafi M, Esfahani MN, Vatandoost J, Hassanzadeh-Khankahdani H, Moeini MJ. 2024. Antioxidant enzymes activity associated with resistance to Phytophthora melonis-pumpkin blight. Physiological and Molecular Plant Pathology 129:102192

doi: 10.1016/j.pmpp.2023.102192
[51]

Fira D, Dimkić I, Berić T, Lozo J, Stanković S. 2018. Biological control of plant pathogens by Bacillus species. Journal of Biotechnology 285:44−55

doi: 10.1016/j.jbiotec.2018.07.044
[52]

Sun P, Cui J, Jia X, Wang W. 2017. Isolation and characterization of Bacillus amyloliquefaciens L-1 for biocontrol of pear ring rot. Horticultural Plant Journal 3:183−89

doi: 10.1016/j.hpj.2017.10.004