[1]

Silva S, Costa EM, Veiga M, Morais RM, Calhau C, et al. 2020. Health promoting properties of blueberries: a review. Critical Reviews in Food Science and Nutrition 60(2):181−200

doi: 10.1080/10408398.2018.1518895
[2]

Dróżdż P, Šėžienė V, Pyrzynska K. 2017. Phytochemical properties and antioxidant activities of extracts from wild blueberries and lingonberries. Plant Foods for Human Nutrition 72(4):360−64

doi: 10.1007/s11130-017-0640-3
[3]

Wang J, Zhao X, Zheng J, Herrera-Balandrano DD, Zhang X, et al. 2023. In vivo antioxidant activity of rabbiteye blueberry (Vaccinium ashei cv. 'Brightwell') anthocyanin extracts. Journal of Zhejiang University-Science B 24(7):602−16

doi: 10.1631/jzus.B2200590
[4]

Faria A, Pestana D, Teixeira D, Mateus N, Calhau C, et al. 2010. Blueberry anthocyanins and pyruvic acid adducts: anticancer properties in breast cancer cell lines. Phytotherapy Research 24(12):1862−69

doi: 10.1002/ptr.3213
[5]

Bensalem J, Dudonné S, Gaudout D, Servant L, Calon F, et al. 2018. Polyphenol-rich extract from grape and blueberry attenuates cognitive decline and improves neuronal function in aged mice. Journal of Nutritional Science 7:e19

doi: 10.1017/jns.2018.10
[6]

Kalt W, Cassidy A, Howard LR, Krikorian R, Stull AJ, et al. 2020. Recent research on the health benefits of blueberries and their anthocyanins. Advances in Nutrition 11(2):224−36

doi: 10.1093/advances/nmz065
[7]

Cappai F, Benevenuto J, Ferrão LFV, Munoz P. 2018. Molecular and genetic bases of fruit firmness variation in blueberry—a review. Agronomy 8(9):174

doi: 10.3390/agronomy8090174
[8]

Montecchiarini ML, Silva-Sanzana C, Valderramo L, Alemano S, Gollán A, et al. 2021. Biochemical differences in the skin of two blueberries (Vaccinium corymbosum) varieties with contrasting firmness: implication of ions, metabolites and cell wall related proteins in two developmental stages. Plant Physiology and Biochemistry 162:483−95

doi: 10.1016/j.plaphy.2021.03.016
[9]

Uluisik S, Chapman NH, Smith R, Poole M, Adams G, et al. 2016. Genetic improvement of tomato by targeted control of fruit softening. Nature Biotechnology 34(9):950−52

doi: 10.1038/nbt.3602
[10]

Wang D, Yeats TH, Uluisik S, Rose JKC, Seymour GB. 2018. Fruit softening: revisiting the role of pectin. Trends in Plant Science 23(4):302−10

doi: 10.1016/j.tplants.2018.01.006
[11]

Eticha D, Stass A, Horst W J. 2005. Cell-wall pectin and its degree of methylation in the maize root‐apex: significance for genotypic differences in aluminium resistance. Plant, Cell & Environment 28(11):1410−20

doi: 10.1111/j.1365-3040.2005.01375.x
[12]

Guillon F, Moïse A, Quemener B, Bouchet B, Devaux MF, et al. 2017. Remodeling of pectin and hemicelluloses in tomato pericarp during fruit growth. Plant Science 257:48−62

doi: 10.1016/j.plantsci.2017.01.008
[13]

Zhou HL, Li JR. 2007. The relationship between fruit structure with pressure and pulling force of berry of grapes. Journal of Northwest A&F University (Natural Science Edition) 35:106−109,114

doi: 10.13207/j.cnki.jnwafu.2007.02.023
[14]

Wang M, Zhao Z, Tang W, Chen Z, Xi X, et al. 2013. Expression and purification of LBD family transcription factors TtRa2 and AtLBD37. Journal of Northwest A&F University (Natural Science Edition) 41(11):174−78

[15]

Chen WF, Wei XB, Rety S, Huang LY, Liu NN, et al. 2019. Structural analysis reveals a "molecular calipers" mechanism for a lateral organ boundaries domain transcription factor protein from wheat. Journal of Biological Chemistry 294(1):142−56

doi: 10.1074/jbc.RA118.003956
[16]

Lee HW, Kim MJ, Park MY, Han KH, Kim J. 2013. The conserved praline residue in the LOB domain of LBDl8 is critical for DNA-binding and biological function. Molecular Plant 6(5):1722−25

doi: 10.1093/mp/sst037
[17]

Husbands A, Bell EM, Shuai B, Smith HM, Springer PS. 2007. LATERAL ORGAN BOUNDARIES defines a new family of DNA-binding transcription factors and can interact with specific bHLH proteins. Nucleic Acids Research 35(19):6663−71

doi: 10.1093/nar/gkm775
[18]

Iwakawa H, Ueno Y, Semiarti E, Onouchi H, Kojima S, et al. 2002. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Plant and Cell Physiology 43(5):467−78

doi: 10.1093/pcp/pcf077
[19]

Shuai B, Reynaga-Peña CG, Springer PS. 2002. The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiology 129(2):747−61

doi: 10.1104/pp.010926
[20]

Wang XF, Liu X, Su L, Sun YJ, Zhang SZ, et al. 2013. Identification, evolution and expression analysis of the LBD gene family in tomato. Scientia Agricultura Sinica 46(12):2501−13

doi: 10.3864/j.issn.0578-1752.2013.12.011
[21]

Gupta K, Gupta S. 2021. Molecular and in silico characterization of tomato LBD transcription factors reveals their role in fruit development and stress responses. Plant Gene 27:100309

doi: 10.1016/j.plgene.2021.100309
[22]

Shi Y. 2017. Regulation of tomato fruit softening by LOB1 and other transcription factors. Thesis. Zhejiang University, China. pp. 54−71

[23]

Chen Q, Zhou MK, Song JM, Zhang C, Wu LK. 2023. Identification and analysis of LBD gene family and expression analysis of fruit development in Cucumis melo. Biological Bulletin 39(03):176−83

doi: 10.13560/j.cnki.biotech.bull.1985.2022-1264
[24]

Ba LJ, Shan W, Kuang JF, Feng BH, Xiao YY, et al. 2014. The banana MaLBD (LATERAL ORGAN BOUNDARIES DOMAIN) transcription factors regulate EXPANSIN expression and are involved in fruit ripening. Plant Molecular Biology Reporter 32:1103−13

doi: 10.1007/s11105-014-0720-6
[25]

Zifkin M, Jin A, Ozga JA, Zaharia LI, Schernthaner JP, et al. 2012. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism. Plant Physiology 158(1):200−24

doi: 10.1104/pp.111.180950
[26]

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology 37(8):907−15

doi: 10.1038/s41587-019-0201-4
[27]

Shumate A, Wong B, Pertea G, Pertea M. 2022. Improved transcriptome assembly using a hybrid of long and short reads with StringTie. PLoS Computational Biology 18(6):e1009730

doi: 10.1371/journal.pcbi.1009730
[28]

Colle M, Leisner CP, Wai CM, Ou SJ, Bird KA, et al. 2019. Haplotype-phased genome and evolution of phytonutrient pathways of tetraploid blueberry. GigaScience 8:giz012

doi: 10.1093/gigascience/giz012
[29]

Benjamini Y, Yekutieli D. 2001. The control of the false discovery rate in multiple testing under dependency. Annals of the Institute of Statistical Mathematics 29:1165−88

doi: 10.1214/aos/1013699998
[30]

Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

doi: 10.1186/1471-2105-12-323
[31]

Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38:3022−27

doi: 10.1093/molbev/msab120
[32]

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, et al. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37(5):1530−34

doi: 10.1093/molbev/msaa015
[33]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13(8):1194−202

doi: 10.1016/j.molp.2020.06.009
[34]

Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40(7):e49

doi: 10.1093/nar/gkr1293
[35]

Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, et al. 2009. Circos: an information aesthetic for comparative genomics. Genome Research 19(9):1639−45

doi: 10.1101/gr.092759.109
[36]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25(4):402−8

doi: 10.1006/meth.2001.1262
[37]

Shen ZL, Gu LL, Li XY, Li YQ, Zong Y, et al. 2023. Foundation and optimization of protocol for blueberry fruit firmness measurement under mix mode of deflection distance and pressure weight. Journal of Fruit Science 40:169−79

doi: 10.13925/j.cnki.gsxb.20220303
[38]

Chen H, Cao S, Fang X, Mu H, Yang H, et al. 2015. Changes in fruit firmness, cell wall composition and cell wall degrading enzymes in postharvest blueberries during storage. Scientia Horticulturae 188:44−48

doi: 10.1016/j.scienta.2015.03.018
[39]

Kozioł A, Cybulska J, Pieczywek PM, Zdunek A. 2017. Changes of pectin nanostructure and cell wall stiffness induced in vitro by pectinase. Carbohydrate Polymers 161:197−207

doi: 10.1016/j.carbpol.2017.01.014
[40]

Blumenkrantz N, Asboe-Hansen G. 1973. New method for quantitative determination of uronic acids. Analytical Biochemistry 54(2):484−89

doi: 10.1016/0003-2697(73)90377-1
[41]

Yang Y, Yu X, Wu P. 2006. Comparison and evolution analysis of two rice subspecies LATERAL ORGAN BOUNDARIES domain gene family and their evolutionary characterization from Arabidopsis. Molecular Phylogenetics and Evolution 39(1):248−262

doi: 10.1016/j.ympev.2005.09.016
[42]

Wang R, Bai T, Gao H, Cui Y, Zhou R, et al. 2023. Genome-wide identification of LBD transcription factors in apple and the function of MdLBD16a in adventitious rooting and callus development. Scientia Horticulturae 317:112048

doi: 10.1016/j.scienta.2023.112048
[43]

Zhu QH, Guo AY, Gao G, Zhong YF, Xu M, et al. 2007. DPTF: a database of poplar transcription factors. Bioinformatics 23(10):1307−8

doi: 10.1093/bioinformatics/btm113
[44]

Yang F, Nie S, Liu H, Shi T, Tian X, et al. 2020. Chromosome-level genome assembly of a parent species of widely cultivated azaleas. Nature Communications 11:5269

doi: 10.1038/s41467-020-18771-4
[45]

Majer C, Hochholdinger F. 2011. Defining the boundaries: structure and function of LOB domain proteins. Trends in Plant Science 16(1):47−52

doi: 10.1016/j.tplants.2010.09.009
[46]

Semiarti E, Ueno Y, Tsukaya H, Iwakawa H, Machida C, et al. 2001. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development 128(10):1771−83

doi: 10.1242/dev.128.10.1771
[47]

Li HH, Liu X, An JP, Hao YJ, Wang XF, et al. 2017. Cloning and elucidation of the functional role of apple MdLBD13 in anthocyanin biosynthesis and nitrate assimilation. Plant Cell, Tissue and Organ Culture 130(4):47−59

doi: 10.1007/s11240-017-1203-x
[48]

Liu L, Zhang J, Xu J, Li Y, Guo L, et al. 2020. CRISPR/Cas9 targeted mutagenesis of SlLBD40, a lateral organ boundaries domain transcription factor, enhances drought tolerance in tomato. Plant Science 301:110683

doi: 10.1016/j.plantsci.2020.110683
[49]

Rubin G, Tohge T, Matsuda F, Saito K, Scheible WR. 2009. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. The Plant Cell 21(11):3567−84

doi: 10.1105/tpc.109.067041
[50]

Hadfield KA, Bennett AB. 1998. Polygalacturonases: many genes in search of a function. Plant Physiology 117(2):337−43

doi: 10.1104/pp.117.2.337
[51]

Huber DJ, O'Donoghue EM. 1993. Polyuronides in avocado (Persea americana) and tomato (Lycopersicon esculentum) fruits exhibit markedly different patterns of molecular weight downshifts during ripening. Plant Physiology 102(2):473−80

doi: 10.1104/pp.102.2.473
[52]

Posé S, Paniagua C, Cifuentes M, Blanco-Portales R, Quesada MA, et al. 2013. Insights into the effects of polygalacturonase FaPG1 gene silencing on pectin matrix disassembly, enhanced tissue integrity, and firmness in ripe strawberry fruits. Journal of Experimental Botany 64(12):3803−15

doi: 10.1093/jxb/ert210
[53]

Song L. 2016. Changes in cell wall substances metabolism during ripening of 'Starkrimson' pear fruits and screening analyses of the related genes. Thesis. Northwest A&F University, China. pp. 23−47

[54]

Hu Y, Zhang J, Jia H, Sosso D, Li T, et al. 2014. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proceedings of the National Academy of Sciences of the United States of America 111(4):E521−E529

doi: 10.1073/pnas.1313271111
[55]

Shi Y, Vrebalov J, Zheng H, Xu Y, Yin X, et al. 2021. A tomato LATERAL ORGAN BOUNDARIES transcription factor, SlLOB1, predominantly regulates cell wall and softening components of ripening. Proceedings of the National Academy of Sciences of the United States of America 118(33):e2102486118

doi: 10.1073/pnas.2102486118
[56]

Liu J, Sheng L, Xu Y, Li J, Yang Z, et al. 2014. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. The Plant Cell 26(3):1081−93

doi: 10.1105/tpc.114.122887
[57]

Sun Y, Fan XY, Cao DM, Tang W, He K, et al. 2010. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell 19(5):765−77

doi: 10.1016/j.devcel.2010.10.010
[58]

Thatcher LF, Powell JJ, Aitken EA, Kazan K, Manners JM. 2012. The lateral organ boundaries domain transcription factor LBD20 functions in Fusarium wilt Susceptibility and jasmonate signaling in Arabidopsis. Plant Physiology 160(1):407−18

doi: 10.1104/pp.112.199067