[1]

Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandmann G, et al. 1999. Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. The Plant Cell 11:57−68

doi: 10.1105/tpc.11.1.57
[2]

Kumar AM, Söll D. 2000. Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis. Plant Physiology 122:49−56

doi: 10.1104/pp.122.1.49
[3]

Lonosky PM, Zhang X, Honavar VG, Dobbs DL, Fu A, et al. 2004. A proteomic analysis of maize chloroplast biogenesis. Plant Physiology 134:560−74

doi: 10.1104/pp.103.032003
[4]

Rudoi AB, Shcherbakov RA. 1998. Analysis of the chlorophyll biosynthetic system in a chlorophyll b-less barley mutant. Photosynthesis Research 58:71−80

doi: 10.1023/A:1006023122582
[5]

Zhao Y, Huang S, Zhang M, Zhang Y, Feng H. 2021. Mapping of a pale green mutant gene and its functional verification by allelic mutations in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Frontiers in Plant Science 12:699308

doi: 10.3389/fpls.2021.699308
[6]

Ma YY, Shi JC, Wang DJ, Liang X, Wei F, et al. 2023. A point mutation in the gene encoding magnesium chelatase I subunit influences strawberry leaf color and metabolism. Plant Physiology 192:2737−55

doi: 10.1093/plphys/kiad247
[7]

Oster U, Tanaka R, Tanaka A, Rüdiger W. 2000. Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. The Plant Journal 21:305−10

doi: 10.1046/j.1365-313x.2000.00672.x
[8]

Lee S, Kim JH, Yoo ES, Lee CH, Hirochika H, et al. 2005. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Molecular Biology 57:805−18

doi: 10.1007/s11103-005-2066-9
[9]

Zhang T, Dong X, Yuan X, Hong Y, Zhang L, et al. 2022. Identification and characterization of CsSRP43, a major gene controlling leaf yellowing in cucumber. Horticulture Research 9:uhac212

doi: 10.1093/hr/uhac212
[10]

Campbell BW, Mani D, Curtin SJ, Slattery RA, Michno JM, et al. 2015. Identical substitutions in magnesium chelatase paralogs result in chlorophyll-deficient soybean mutants. G3 Genes|Genomes|Genetics 5:123−31

doi: 10.1534/g3.114.015255
[11]

Williams P, Hardeman K, Fowler J, Rivin C. 2006. Divergence of duplicated genes in maize: evolution of contrasting targeting information for enzymes in the porphyrin pathway. The Plant Journal 45:727−39

doi: 10.1111/j.1365-313X.2005.02632.x
[12]

Tanaka R, Tanaka A. 2007. Tetrapyrrole biosynthesis in higher plants. Annual Review of Plant Biology 58:321−46

doi: 10.1146/annurev.arplant.57.032905.105448
[13]

Fölsche V, Großmann C, Richter AS. 2022. Impact of porphyrin binding to GENOMES UNCOUPLED 4 on tetrapyrrole biosynthesis in planta. Frontiers in Plant Science 13:850504

doi: 10.3389/fpls.2022.850504
[14]

Song M, Wei Q, Wang J, Fu W, Qin X, et al. 2018. Fine mapping of CsVYL , conferring virescent leaf through the regulation of chloroplast development in cucumber. Frontiers in Plant Science 9:432

doi: 10.3389/fpls.2018.00432
[15]

Zhu X, Guo S, Wang Z, Du Q, Xing Y, et al. 2016. Map-based cloning and functional analysis of YGL8, which controls leaf colour in rice (Oryza sativa). BMC Plant Biology 16:134

doi: 10.1186/s12870-016-0821-5
[16]

Mullet JE. 1993. Dynamic regulation of chloroplast transcription. Plant Physiology 103:309−13

doi: 10.1104/pp.103.2.309
[17]

Moreira D, Le Guyader H, Philippe H. 2000. The origin of red algae and the evolution of chloroplasts. Nature 405:69−72

doi: 10.1038/35011054
[18]

Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S. 1999. Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Research 6:283−90

doi: 10.1093/dnares/6.5.283
[19]

Liu X, Lan J, Huang Y, Cao P, Zhou C, et al. 2018. WSL5, a pentatricopeptide repeat protein, is essential for chloroplast biogenesis in rice under cold stress. Journal of Experimental Botany 69:3949−61

doi: 10.1093/jxb/ery214
[20]

Lurin C, Andrés C, Aubourg S, Bellaoui M, Bitton F, et al. 2004. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. The Plant Cell 16:2089−103

doi: 10.1105/tpc.104.022236
[21]

Wang X, An Y, Qi Z, Xiao J. 2021. PPR protein Early Chloroplast Development 2 is essential for chloroplast development at the early stage of Arabidopsis development. Plant Science 308:110908

doi: 10.1016/j.plantsci.2021.110908
[22]

Lan J, Lin Q, Zhou C, Liu X, Miao R, et al. 2023. Young Leaf White Stripe encodes a P-type PPR protein required for chloroplast development. Journal of Integrative Plant Biology 65:1687−702

doi: 10.1111/jipb.13477
[23]

Feng X, Yang S, Zhang Y, Cheng Z, Tang K, et al. 2021. GmPGL2 , encoding a pentatricopeptide repeat protein, is essential for chloroplast RNA editing and biogenesis in soybean. Frontiers in Plant Science 12:690973

doi: 10.3389/fpls.2021.690973
[24]

Huang J, Lu G, Liu L, Raihan MS, Xu J, et al. 2020. The kernel size-related quantitative trait locus qKW9 encodes a pentatricopeptide repeat protein that aaffects photosynthesis and grain filling. Plant Physiology 183:1696−709

doi: 10.1104/pp.20.00374
[25]

Zhang B, Wu Y, Li S, Ren W, Yang L, et al. 2024. Chloroplast C-to-U editing, regulated by a PPR protein BoYgl-2, is important for chlorophyll biosynthesis in cabbage. Horticulture Research 11:uhae006

doi: 10.1093/hr/uhae006
[26]

Holm G. 1954. Chlorophyll mutations in barley. Acta Agriculturae Scandinavica 4:457−71

doi: 10.1080/00015125409439955
[27]

Zhao H, Yu L, Huai Z, Wang X, Ding G, et al. 2014. Mapping and candidate gene identification defining BnChd1-1, a locus involved in chlorophyll biosynthesis in Brassica napus. Acta Physiologiae Plantarum 36:859−70

doi: 10.1007/s11738-013-1464-x
[28]

Murray MG, Thompson WF. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8:4321−26

doi: 10.1093/nar/8.19.4321
[29]

Liu C, Song G, Wang N, Huang S, Gao Y, et al. 2021. A single SNP in Brcer1 results in wax deficiency in Chinese cabbage (Brassica campestris L. pekinensis). ssp. Scientia Horticulturae 282:110019

doi: 10.1016/j.scienta.2021.110019
[30]

Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16:735−43

doi: 10.1046/j.1365-313x.1998.00343.x
[31]

Jung KH, Hur J, Ryu CH, Choi Y, Chung YY, et al. 2003. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant and Cell Physiology 44:463−72

doi: 10.1093/pcp/pcg064
[32]

Wang Y, Ren Y, Zhou K, Liu L, Wang J, et al. 2017. WHITE STRIPE LEAF4 encodes a novel P-type PPR protein required for chloroplast biogenesis during early leaf development. Frontiers in Plant Science 8:1116

doi: 10.3389/fpls.2017.01116
[33]

He P, Wu S, Jiang Y, Zhang L, Tang M, et al. 2019. GhYGL1d, a pentatricopeptide repeat protein, is required for chloroplast development in cotton. BMC Plant Biology 19:350

doi: 10.1186/s12870-019-1945-1
[34]

Chen L, Huang L, Dai L, Gao Y, Zou W, et al. 2019. PALE-GREEN LEAF12 encodes a novel pentatricopeptide repeat protein required for chloroplast development and 16S rRNA processing in rice. Plant and Cell Physiology 60:587−98

doi: 10.1093/pcp/pcy229
[35]

Sosso D, Canut M, Gendrot G, Dedieu A, Chambrier P, et al. 2012. PPR8522 encodes a chloroplast-targeted pentatricopeptide repeat protein necessary for maize embryogenesis and vegetative development. Journal of Experimental Botany 63:5843−57

doi: 10.1093/jxb/ers232
[36]

Wang X, An Y, Xu P, Xiao J. 2021. Functioning of PPR proteins in organelle RNA metabolism and chloroplast biogenesis. Frontiers in Plant Science 12:627501

doi: 10.3389/fpls.2021.627501
[37]

Zu X, Luo L, Wang Z, Gong J, Yang C, et al. 2023. A mitochondrial pentatricopeptide repeat protein enhances cold tolerance by modulating mitochondrial superoxide in rice. Nature Communications 14:6789

doi: 10.1038/s41467-023-42269-4
[38]

Xu C, Wang JC, Sun L, Zhuang LH, Guo ZJ, et al. 2024. Genome-wide identification of pentatricopeptide repeat (PPR) gene family and multi-omics analysis provide new insights into the albinism mechanism of Kandelia obovata propagule leaves. Plant, Cell & Environment 47:5498−510

doi: 10.1111/pce.15132
[39]

Wang Y, Mai W, Liang C, Zhang M. 2003. Advances on studies of plant promoters. Acta Botanica Boreali-occidentalia Sinica 23:2040−48

doi: 10.3321/j.issn:1000-4025.2003.11.037
[40]

Zhu L, Yang Z, Zeng X, Gao J, Liu J, et al. 2017. Heme oxygenase 1 defects lead to reduced chlorophyll in Brassica napus. Plant Molecular Biology 93:579−92

doi: 10.1007/s11103-017-0583-y
[41]

Miao H, Zhang S, Wang M, Wang Y, Weng Y, et al. 2016. Fine mapping of virescent leaf gene v-1 in cucumber (Cucumis sativus L.). International Journal of Molecular Sciences 17:1602

doi: 10.3390/ijms17101602
[42]

Li X, Huang S, Liu Z, Hou L, Feng H. 2019. Mutation in EMB1923 gene promoter is associated with chlorophyll deficiency in Chinese cabbage (Brassica campestris ssp. pekinensis). Physiologia Plantarum 166:909−20

doi: 10.1111/ppl.12979
[43]

Naito K, Zhang F, Tsukiyama T, Saito H, Hancock CN, et al. 2009. Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461:1130−34

doi: 10.1038/nature08479
[44]

Li Q, Zhou S, Liu W, Zhai Z, Pan Y, et al. 2021. A chlorophyll a oxygenase 1 gene ZmCAO1 contributes to grain yield and waterlogging tolerance in maize. Journal of Experimental Botany 72:3155−67

doi: 10.1093/jxb/erab059
[45]

Zhang H, Zhang J, Xu P, Li M, Li Y. 2024. Insertion of a miniature inverted-repeat transposable element into the promoter of OsTCP4 results in more tillers and a lower grain size in rice. Journal of Experimental Botany 75:1421−36

doi: 10.1093/jxb/erad467
[46]

Zhang C, Wang H, Tian X, Lin X, Han Y, et al. 2024. A transposon insertion in the promoter of OsUBC12 enhances cold tolerance during Japonica rice germination. Nature Communications 15:2211

doi: 10.1038/s41467-024-46420-7