| [1] |
Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandmann G, et al. 1999. Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. |
| [2] |
Kumar AM, Söll D. 2000. Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis. |
| [3] |
Lonosky PM, Zhang X, Honavar VG, Dobbs DL, Fu A, et al. 2004. A proteomic analysis of maize chloroplast biogenesis. |
| [4] |
Rudoi AB, Shcherbakov RA. 1998. Analysis of the chlorophyll biosynthetic system in a chlorophyll b-less barley mutant. |
| [5] |
Zhao Y, Huang S, Zhang M, Zhang Y, Feng H. 2021. Mapping of a pale green mutant gene and its functional verification by allelic mutations in Chinese cabbage (Brassica rapa L. ssp. pekinensis). |
| [6] |
Ma YY, Shi JC, Wang DJ, Liang X, Wei F, et al. 2023. A point mutation in the gene encoding magnesium chelatase I subunit influences strawberry leaf color and metabolism. |
| [7] |
Oster U, Tanaka R, Tanaka A, Rüdiger W. 2000. Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. |
| [8] |
Lee S, Kim JH, Yoo ES, Lee CH, Hirochika H, et al. 2005. Differential regulation of chlorophyll a oxygenase genes in rice. |
| [9] |
Zhang T, Dong X, Yuan X, Hong Y, Zhang L, et al. 2022. Identification and characterization of CsSRP43, a major gene controlling leaf yellowing in cucumber. |
| [10] |
Campbell BW, Mani D, Curtin SJ, Slattery RA, Michno JM, et al. 2015. Identical substitutions in magnesium chelatase paralogs result in chlorophyll-deficient soybean mutants. |
| [11] |
Williams P, Hardeman K, Fowler J, Rivin C. 2006. Divergence of duplicated genes in maize: evolution of contrasting targeting information for enzymes in the porphyrin pathway. |
| [12] |
Tanaka R, Tanaka A. 2007. Tetrapyrrole biosynthesis in higher plants. |
| [13] |
Fölsche V, Großmann C, Richter AS. 2022. Impact of porphyrin binding to GENOMES UNCOUPLED 4 on tetrapyrrole biosynthesis in planta. |
| [14] |
Song M, Wei Q, Wang J, Fu W, Qin X, et al. 2018. Fine mapping of CsVYL , conferring virescent leaf through the regulation of chloroplast development in cucumber. |
| [15] |
Zhu X, Guo S, Wang Z, Du Q, Xing Y, et al. 2016. Map-based cloning and functional analysis of YGL8, which controls leaf colour in rice (Oryza sativa). |
| [16] |
Mullet JE. 1993. Dynamic regulation of chloroplast transcription. |
| [17] |
Moreira D, Le Guyader H, Philippe H. 2000. The origin of red algae and the evolution of chloroplasts. |
| [18] |
Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S. 1999. Complete structure of the chloroplast genome of Arabidopsis thaliana. |
| [19] |
Liu X, Lan J, Huang Y, Cao P, Zhou C, et al. 2018. WSL5, a pentatricopeptide repeat protein, is essential for chloroplast biogenesis in rice under cold stress. |
| [20] |
Lurin C, Andrés C, Aubourg S, Bellaoui M, Bitton F, et al. 2004. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. |
| [21] |
Wang X, An Y, Qi Z, Xiao J. 2021. PPR protein Early Chloroplast Development 2 is essential for chloroplast development at the early stage of Arabidopsis development. |
| [22] |
Lan J, Lin Q, Zhou C, Liu X, Miao R, et al. 2023. Young Leaf White Stripe encodes a P-type PPR protein required for chloroplast development. |
| [23] |
Feng X, Yang S, Zhang Y, Cheng Z, Tang K, et al. 2021. GmPGL2 , encoding a pentatricopeptide repeat protein, is essential for chloroplast RNA editing and biogenesis in soybean. |
| [24] |
Huang J, Lu G, Liu L, Raihan MS, Xu J, et al. 2020. The kernel size-related quantitative trait locus qKW9 encodes a pentatricopeptide repeat protein that aaffects photosynthesis and grain filling. |
| [25] |
Zhang B, Wu Y, Li S, Ren W, Yang L, et al. 2024. Chloroplast C-to-U editing, regulated by a PPR protein BoYgl-2, is important for chlorophyll biosynthesis in cabbage. |
| [26] |
Holm G. 1954. Chlorophyll mutations in barley. |
| [27] |
Zhao H, Yu L, Huai Z, Wang X, Ding G, et al. 2014. Mapping and candidate gene identification defining BnChd1-1, a locus involved in chlorophyll biosynthesis in Brassica napus. |
| [28] |
Murray MG, Thompson WF. 1980. Rapid isolation of high molecular weight plant DNA. |
| [29] |
Liu C, Song G, Wang N, Huang S, Gao Y, et al. 2021. A single SNP in Brcer1 results in wax deficiency in Chinese cabbage (Brassica campestris L. pekinensis). |
| [30] |
Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. |
| [31] |
Jung KH, Hur J, Ryu CH, Choi Y, Chung YY, et al. 2003. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. |
| [32] |
Wang Y, Ren Y, Zhou K, Liu L, Wang J, et al. 2017. WHITE STRIPE LEAF4 encodes a novel P-type PPR protein required for chloroplast biogenesis during early leaf development. |
| [33] |
He P, Wu S, Jiang Y, Zhang L, Tang M, et al. 2019. GhYGL1d, a pentatricopeptide repeat protein, is required for chloroplast development in cotton. |
| [34] |
Chen L, Huang L, Dai L, Gao Y, Zou W, et al. 2019. PALE-GREEN LEAF12 encodes a novel pentatricopeptide repeat protein required for chloroplast development and 16S rRNA processing in rice. |
| [35] |
Sosso D, Canut M, Gendrot G, Dedieu A, Chambrier P, et al. 2012. PPR8522 encodes a chloroplast-targeted pentatricopeptide repeat protein necessary for maize embryogenesis and vegetative development. |
| [36] |
Wang X, An Y, Xu P, Xiao J. 2021. Functioning of PPR proteins in organelle RNA metabolism and chloroplast biogenesis. |
| [37] |
Zu X, Luo L, Wang Z, Gong J, Yang C, et al. 2023. A mitochondrial pentatricopeptide repeat protein enhances cold tolerance by modulating mitochondrial superoxide in rice. |
| [38] |
Xu C, Wang JC, Sun L, Zhuang LH, Guo ZJ, et al. 2024. Genome-wide identification of pentatricopeptide repeat (PPR) gene family and multi-omics analysis provide new insights into the albinism mechanism of Kandelia obovata propagule leaves. |
| [39] |
Wang Y, Mai W, Liang C, Zhang M. 2003. Advances on studies of plant promoters. |
| [40] |
Zhu L, Yang Z, Zeng X, Gao J, Liu J, et al. 2017. Heme oxygenase 1 defects lead to reduced chlorophyll in Brassica napus. |
| [41] |
Miao H, Zhang S, Wang M, Wang Y, Weng Y, et al. 2016. Fine mapping of virescent leaf gene v-1 in cucumber (Cucumis sativus L.). |
| [42] |
Li X, Huang S, Liu Z, Hou L, Feng H. 2019. Mutation in EMB1923 gene promoter is associated with chlorophyll deficiency in Chinese cabbage (Brassica campestris ssp. pekinensis). |
| [43] |
Naito K, Zhang F, Tsukiyama T, Saito H, Hancock CN, et al. 2009. Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. |
| [44] |
Li Q, Zhou S, Liu W, Zhai Z, Pan Y, et al. 2021. A chlorophyll a oxygenase 1 gene ZmCAO1 contributes to grain yield and waterlogging tolerance in maize. |
| [45] |
Zhang H, Zhang J, Xu P, Li M, Li Y. 2024. Insertion of a miniature inverted-repeat transposable element into the promoter of OsTCP4 results in more tillers and a lower grain size in rice. |
| [46] |
Zhang C, Wang H, Tian X, Lin X, Han Y, et al. 2024. A transposon insertion in the promoter of OsUBC12 enhances cold tolerance during Japonica rice germination. |