[1]

National Pharmacopoeia Commission. 2020. Pharmacopoeia of the People's Republic of China, (2020 edition). China: China Medical Science Press

[2]

Xiong J, Li S, Wang W, Hong Y, Tang K, et al. 2013. Screening and identification of the antibacterial bioactive compounds from Lonicera japonica Thunb. leaves. Food Chemistry 138:327−33

doi: 10.1016/j.foodchem.2012.10.127
[3]

Yang B, Zhong Z, Wang T, Ou Y, Tian J, et al. 2019. Integrative omics of Lonicera japonica Thunb. Flower development unravels molecular changes regulating secondary metabolites. Journal of Proteomics 208:103470

doi: 10.1016/j.jprot.2019.103470
[4]

Fang H, Qi X, Li Y, Yu X, Xu D, et al. 2020. De novo transcriptomic analysis of light-induced flavonoid pathway, transcription factors in the flower buds of Lonicera japonica. Trees 34:267−83

doi: 10.1007/s00468-019-01916-4
[5]

Liu Y, Dong H, Sun-Waterhouse D, Li W, Zhang B, et al. 2024. Three anti-inflammatory polysaccharides from Lonicera japonica Thunb.: insights into the structure-function relationships . Food Science and Human Wellness 13:2197−207

doi: 10.26599/FSHW.2022.9250183
[6]

Shang X, Pan H, Li M, Miao X, Ding H. 2011. Lonicera japonica Thunb.: ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. Journal of Ethnopharmacology 138:1−21

doi: 10.1016/j.jep.2011.08.016
[7]

Yoo HJ, Kang HJ, Song YS, Park EH, Lim CJ. 2008. Anti-angiogenic, antinociceptive and anti-inflammatory activities of Lonicera japonica extract. Journal of Pharmacy and Pharmacology 60:779−86

doi: 10.1211/jpp.60.6.0014
[8]

Kong D, Li Y, Bai M, Deng Y, Liang G, et al. 2017. A comparative study of the dynamic accumulation of polyphenol components and the changes in their antioxidant activities in diploid and tetraploid Lonicera japonica. Plant Physiology and Biochemistry 112:87−96

doi: 10.1016/j.plaphy.2016.12.027
[9]

Wang D, Zhao X, Liu Y. 2017. Hypoglycemic and hypolipidemic effects of a polysaccharide from flower buds of Lonicera japonica in streptozotocin-induced diabetic rats. International Journal of Biological Macromolecules 102:396−404

doi: 10.1016/j.ijbiomac.2017.04.056
[10]

Xiang T, Xiong QB, Ketut AI, Tezuka Y, Nagaoka T, et al. 2001. Studies on the hepatocyte protective activity and the structure-activity relationships of quinic acid and caffeic acid derivatives from the flower buds of Lonicera bournei. Planta Medica 67:322−25

doi: 10.1055/s-2001-14337
[11]

Yeh YC, Doan LH, Huang ZY, Chu LW, Shi TH, et al. 2021. Honeysuckle (Lonicera japonica) and Huangqi (Astragalus membranaceus) suppress SARS-CoV-2 entry and COVID-19 related cytokine storm in vitro. Frontiers in Pharmacology 12:765553

doi: 10.3389/fphar.2021.765553
[12]

Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54:519−46

doi: 10.1146/annurev.arplant.54.031902.134938
[13]

Valiñas MA, Lanteri ML, ten Have A, Andreu AB. 2017. Chlorogenic acid, anthocyanin and flavan-3-ol biosynthesis in flesh and skin of Andean potato tubers (Solanum tuberosum subsp. Andigena). Food Chemistry 229:837−46

doi: 10.1016/j.foodchem.2017.02.150
[14]

Rudkin GO, Nelson JM. 1947. Chlorogenic acid and respiration of sweet potatoes. Journal of the American Chemical Society 69:1470−75

doi: 10.1021/ja01198a065
[15]

Paulino BN, Sales A, Felipe L, Pastore GM, Molina G, et al. 2021. Recent advances in the microbial and enzymatic production of aroma compounds. Current Opinion in Food Science 37:98−106

doi: 10.1016/j.cofs.2020.09.010
[16]

Li Z, Nair SK. 2015. Structural basis for specificity and flexibility in a plant 4-coumarate: CoA ligase. Structure 23:2032−42

doi: 10.1016/j.str.2015.08.012
[17]

Hoffmann L, Maury S, Martz F, Geoffroy P, Legrand M. 2003. Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. Journal of Biological Chemistry 278:95−103

doi: 10.1074/jbc.M209362200
[18]

Niggeweg R, Michael AJ, Martin C. 2004. Engineering plants with increased levels of the antioxidant chlorogenic acid. Nature Biotechnology 22:746−54

doi: 10.1038/nbt966
[19]

Kriegshauser L, Knosp S, Grienenberger E, Tatsumi K, Gütle DD, et al. 2021. Function of the HYDROXYCINNAMOYL-CoA: SHIKIMATE HYDROXYCINNAMOYL TRANSFERASE is evolutionarily conserved in embryophytes. The Plant Cell 33:1472−91

doi: 10.1093/plcell/koab044
[20]

Villegas RJ, Kojima M. 1986. Purification and characterization of hydroxycinnamoyl D-glucose. Quinate hydroxycinnamoyl transferase in the root of sweet potato, Ipomoea batatas Lam. Journal of Biological Chemistry 261:8729−33

doi: 10.1016/S0021-9258(19)84441-1
[21]

Payyavula RS, Shakya R, Sengoda VG, Munyaneza JE, Swamy P, et al. 2015. Synthesis and regulation of chlorogenic acid in potato: rerouting phenylpropanoid flux in HQT-silenced lines. Plant Biotechnology Journal 13:551−64

doi: 10.1111/pbi.12280
[22]

Li Y, Kong D, Bai M, He H, Wang H, et al. 2019. Correlation of the temporal and spatial expression patterns of HQT with the biosynthesis and accumulation of chlorogenic acid in Lonicera japonica flowers. Horticulture Research 6:73

doi: 10.1038/s41438-019-0154-2
[23]

Valiñas MA, Lanteri ML, ten Have A, Andreu AB. 2015. Chlorogenic acid biosynthesis appears linked with suberin production in potato tuber (Solanum tuberosum). Journal of Agricultural and Food Chemistry 63:4902−13

doi: 10.1021/jf505777p
[24]

Zhang Y, Li X, Qu X, Ren M, Tong Y, et al. 2024. Identification and characterization of sub-group 4 R2R3-MYB members and their functions in phenylpropanoid and flavonoid regulation in tobacco. Current Plant Biology 37:100317

doi: 10.1016/j.cpb.2023.100317
[25]

Zhang C, Liu Y, Liu Y, Li H, Chen Y, et al. 2024. Transcription factor NtMYB59 targets NtMYB12 to negatively regulate the biosynthesis of polyphenols in Nicotiana tabacum. Plant Physiology and Biochemistry 216:109181

doi: 10.1016/j.plaphy.2024.109181
[26]

Tang N, Cao Z, Yang C, Ran D, Wu P, et al. 2021. A R2R3-MYB transcriptional activator LmMYB15 regulates chlorogenic acid biosynthesis and phenylpropanoid metabolism in Lonicera macranthoides. Plant Science 308:110924

doi: 10.1016/j.plantsci.2021.110924
[27]

Espinosa E, Bautista R, Larrosa R, Plata O. 2024. Advancements in long-read genome sequencing technologies and algorithms. Genomics 116:110842

doi: 10.1016/j.ygeno.2024.110842
[28]

Oikonomopoulos S, Bayega A, Fahiminiya S, Djambazian H, Berube P, et al. 2020. Methodologies for transcript profiling using long-read technologies. Frontiers in Genetics 11:606

doi: 10.3389/fgene.2020.00606
[29]

Rhoads A, Au KF. 2015. PacBio sequencing and its applications. Genomics, Proteomics & Bioinformatics 13:278−89

doi: 10.1016/j.gpb.2015.08.002
[30]

Eid J, Fehr A, Gray J, Luong K, Lyle J, et al. 2009. Real-time DNA sequencing from single polymerase molecules. Science 323:133−38

doi: 10.1126/science.1162986
[31]

Bottacini F, van Sinderen D. 2021. Bifidobacterium genome assembly and methylome analysis using Pacbio SMRT sequencing. In Bifidobacteria, eds van Sinderen D, Ventura M. New York, NY: Springer. Volume 2278. pp. 225–32 doi: 10.1007/978-1-0716-1274-3_18

[32]

Sedlazeck FJ, Lee H, Darby CA, Schatz MC. 2018. Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nature Reviews Genetics 19:329−46

doi: 10.1038/s41576-018-0003-4
[33]

Hong F, Mo SH, Lin XY, Niu J, Yin J, et al. 2020. The PacBio full-length transcriptome of the tea aphid as a reference resource. Frontiers in Genetics 11:558394

doi: 10.3389/fgene.2020.558394
[34]

Li A, Zhang J, Zhou Z. 2014. PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme. BMC Bioinformatics 15:311

doi: 10.1186/1471-2105-15-311
[35]

Gong Y, Huang HT, Liang Y, Trimarchi T, Aifantis I, et al. 2017. lncRNA-screen: an interactive platform for computationally screening long non-coding RNAs in large genomics datasets. BMC Genomics 18:434

doi: 10.1186/s12864-017-3817-0
[36]

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870−74

doi: 10.1093/molbev/msw054
[37]

Park E, Cho M, Ki CS. 2009. Correct use of repeated measures analysis of variance. Korean Journal of Laboratory Medicine 29:1−9

doi: 10.3343/kjlm.2009.29.1.1
[38]

Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. 2014. jvenn: an interactive Venn diagram viewer. BMC Bioinformatics 15:293

doi: 10.1186/1471-2105-15-293
[39]

Kabacoff RI. 2015. R in action: data analysis and graphics with R. US: Manning Publications

[40]

Wang X, Zeng Z, Tian Z, Sun J, Li Y, et al. 2019. Validation of spectrophotometric determination of chlorogenic acid in fermentation broth and fruits. Food Chemistry 278:170−77

doi: 10.1016/j.foodchem.2018.11.041
[41]

Di S, Zhang P, Zhang J, Liu G, Wang G, et al. 2022. Tomato UVI4 homologue modulates cell expansion to participate heat-stimulated hypocotyl elongation. Environmental and Experimental Botany 201:104963

doi: 10.1016/j.envexpbot.2022.104963
[42]

Pu X, Li Z, Tian Y, Gao R, Hao L, et al. 2020. The honeysuckle genome provides insight into the molecular mechanism of carotenoid metabolism underlying dynamic flower coloration. New Phytologist 227:930−43

doi: 10.1111/nph.16552
[43]

Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, et al. 2012. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134

doi: 10.1186/1471-2105-13-134
[44]

Zhong C, Tang Y, Pang B, Li X, Yang Y, et al. 2020. The R2R3-MYB transcription factor GhMYB1a regulates flavonol and anthocyanin accumulation in Gerbera hybrida. Horticulture Research 7:78

doi: 10.1038/s41438-020-0296-2
[45]

Liu C, Long J, Zhu K, Liu L, Yang W, et al. 2016. Characterization of a Citrus R2R3-MYB transcription factor that regulates the flavonol and hydroxycinnamic acid biosynthesis. Scientific Reports 6:25352

doi: 10.1038/srep25352
[46]

Wang B, Tseng E, Regulski M, Clark TA, Hon T, et al. 2016. Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing. Nature Communications 7:11708

doi: 10.1038/ncomms11708
[47]

Li Y, Xie L, Liu K, Li X, Xie F. 2023. Bioactive components and beneficial bioactivities of flowers, stems, leaves of Lonicera japonica Thunberg: a review. Biochemical Systematics and Ecology 106:104570

doi: 10.1016/j.bse.2022.104570
[48]

Yu H, Cui N, Guo K, Xu W, Wang H. 2023. Epigenetic changes in the regulation of carotenoid metabolism during honeysuckle flower development. Horticultural Plant Journal 9:577−88

doi: 10.1016/j.hpj.2022.11.003
[49]

Zhang J, Wu M, Li W, Bai G. 2017. Regulation of chlorogenic acid biosynthesis by hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase in Lonicera japonica. Plant Physiology and Biochemistry 121:74−79

doi: 10.1016/j.plaphy.2017.10.017
[50]

Czemmel S, Heppel SC, Bogs J. 2012. R2R3 MYB transcription factors: key regulators of the flavonoid biosynthetic pathway in grapevine. Protoplasma 249:109−18

doi: 10.1007/s00709-012-0380-z
[51]

Wang T, Yang B, Guan Q, Chen X, Zhong Z, et al. 2019. Transcriptional regulation of Lonicera japonica Thunb. during flower development as revealed by comprehensive analysis of transcription factors. BMC Plant Biology 19:198

doi: 10.1186/s12870-019-1803-1
[52]

Zhong R, Ye ZH. 2009. Transcriptional regulation of lignin biosynthesis. Plant Signaling & Behavior 4:1028−34

doi: 10.4161/psb.4.11.9875
[53]

Liu Y, Kui LW, Espley RV, Wang L, Li Y, et al. 2019. StMYB44 negatively regulates anthocyanin biosynthesis at high temperatures in tuber flesh of potato. Journal of Experimental Botany 70:3809−24

doi: 10.1093/jxb/erz194
[54]

Guan R, Guo F, Guo R, Wang S, Sun X, et al. 2023. Integrated metabolic profiling and transcriptome analysis of Lonicera japonica flowers for chlorogenic acid, luteolin and endogenous hormone syntheses. Gene 888:147739

doi: 10.1016/j.gene.2023.147739