[1]

Xiao Y, Wu K. 2019. Recent progress on the interaction between insects and Bacillus thuringiensis crops. Transactions of the Royal Society of London Series B, Biological Sciences 374:20180316

doi: 10.1098/rstb.2018.0316
[2]

Siddiqui JA, Fan R, Naz H, Bamisile BS, Hafeez M, et al. 2023. Insights into insecticide-resistance mechanisms in invasive species: challenges and control strategies. Frontiers in Physiology 13:1112278

doi: 10.3389/fphys.2022.1112278
[3]

Khromykh A, Solomon BD. 2015. The benefits of whole-genome sequencing now and in the future. Molecular Syndromology 6:108−9

doi: 10.1159/000438732
[4]

Webster MT, Beaurepaire A, Neumann P, Stolle E. 2023. Population genomics for insect conservation. Annual Review of Animal Biosciences 11:115−40

doi: 10.1146/annurev-animal-122221-075025
[5]

Hotaling S, Sproul JS, Heckenhauer J, Powell A, Larracuente AM, et al. 2021. Long reads are revolutionizing 20 years of insect genome sequencing. Genome Biology and Evolution 13:evab138

doi: 10.1093/gbe/evab138
[6]

Pita S, Rico-Porras JM, Lorite P, Mora P. 2025. Genome assemblies and other genomic tools for understanding insect adaptation. Current Opinion in Insect Science 68:101334

doi: 10.1016/j.cois.2025.101334
[7]

Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, et al. 2020. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nature Methods 17:1103−10

doi: 10.1038/s41592-020-00971-x
[8]

Wee Y, Bhyan SB, Liu Y, Lu J, Li X, et al. 2019. The bioinformatics tools for the genome assembly and analysis based on third-generation sequencing. Briefings in Functional Genomics 18:1−12

doi: 10.1093/bfgp/ely037
[9]

Cheng H, Concepcion GT, Feng X, Zhang H, Li H. 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods 18:170−75

doi: 10.1038/s41592-020-01056-5
[10]

Zhao H, Zhou H, Sun G, Dong B, Zhu W, et al. 2024. Telomere-to-telomere genome assembly of the goose Anser cygnoides. Scientific Data 11:741

doi: 10.1038/s41597-024-03567-8
[11]

Feng K, Liu JL, Sun N, Zhou ZQ, Yang ZY, et al. 2025. Telomere-to-telomere genome assembly reveals insights into the adaptive evolution of herbivore-defense mediated by volatile terpenoids in Oenanthe javanica. Plant Biotechnology Journal 23:2346−57

doi: 10.1111/pbi.70062
[12]

Li WS, Xiao YD, Liu JQ, Li SL, Chen Y, et al. 2024. The T2T genome of the domesticated silkworm Bombyx mori. International Journal of Molecular Sciences 25:12341

doi: 10.3390/ijms252212341
[13]

Kawamoto M, Jouraku A, Toyoda A, Yokoi K, Minakuchi Y, et al. 2019. High-quality genome assembly of the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology 107:53−62

doi: 10.1016/j.ibmb.2019.02.002
[14]

Xu Y, Wang C, Li Z, Zheng X, Kang Z, et al. 2024. A chromosome-level haplotype-resolved genome assembly of oriental tobacco budworm (Helicoverpa assulta). Scientific Data 11:461

doi: 10.1038/s41597-024-03264-6
[15]

Zhao YJ, Wang ZQ, Zhu JY, Liu NY. 2020. Identification and characterization of detoxification genes in two cerambycid beetles, Rhaphuma horsfieldi and Xylotrechus quadripes (Coleoptera: Cerambycidae: Clytini). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 243−244:110431

doi: 10.1016/j.cbpb.2020.110431
[16]

Xia J, Xu H, Yang Z, Pan H, Yang X, et al. 2019. Genome-wide analysis of carboxylesterases (COEs) in the whitefly, Bemisia tabaci (Gennadius). International Journal of Molecular Sciences 20:4973

doi: 10.3390/ijms20204973
[17]

Wicher D, Miazzi F. 2021. 13 − Insect odorant receptors: function and regulation. In Insect Pheromone Biochemistry and Molecular Biology (Second Edition), eds. Blomquist GJ, Vogt RG. London: Academic Press. pp. 415−33 doi:10.1016/B978-0-12-819628-1.00013-4

[18]

Zhang L, Li Z, Peng Y, Liang X, Wilson K, et al. 2023. Global genomic signature reveals the evolution of fall armyworm in the Eastern hemisphere. Molecular Ecology 32:5463−78

doi: 10.1111/mec.17117
[19]

Sivashankari S, Shanmughavel P. 2007. Comparative genomics − a perspective. Bioinformation 1:376−78

doi: 10.6026/97320630001376
[20]

Weng YM, Shashank PR, Godfrey RK, Plotkin D, Parker BM, et al. 2024. Evolutionary genomics of three agricultural pest moths reveals rapid evolution of host adaptation and immune-related genes. GigaScience 13:giad103

doi: 10.1093/gigascience/giad103
[21]

Huang C, Ji B, Shi Z, Wang J, Yuan J, et al. 2025. A comparative genomic analysis at the chromosomal-level reveals evolutionary patterns of aphid chromosomes. Communications Biology 8:427

doi: 10.1038/s42003-025-07851-0
[22]

Wu G, Wu C, Dewer Y, Li P, Hao B, et al. 2024. Comparative genomics reveals evolutionary drivers of the dietary shift in Hemiptera. Bulletin of Entomological Research 114:41−48

doi: 10.1017/S0007485323000597
[23]

Huang HJ, Cui JR, Hong XY. 2020. Comparative analysis of diet-associated responses in two rice planthopper species. BMC Genomics 21:565

doi: 10.1186/s12864-020-06976-2
[24]

Nagoshi RN, Goergen G, Plessis HD, van den Berg J, Meagher R. 2019. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Scientific Reports 9:8311

doi: 10.1038/s41598-019-44744-9
[25]

Denecke S, Rankić I, Driva O, Kalsi M, Luong NBH, et al. 2021. Comparative and functional genomics of the ABC transporter superfamily across arthropods. BMC Genomics 22:553

doi: 10.1186/s12864-021-07861-2
[26]

Lu Y, Su F, Zhu K, Zhu M, Li Q, et al. 2020. Comparative genomic analysis of C-type lectin-domain genes in seven holometabolous insect species. Insect Biochemistry and Molecular Biology 126:103451

doi: 10.1016/j.ibmb.2020.103451
[27]

Zhao H, Liu H, Liu Y, Wang C, Ma B, et al. 2023. Chromosome-level genomes of two armyworms, Mythimna separata and Mythimna loreyi, provide insights into the biosynthesis and reception of sex pheromones. Molecular Ecology Resources 23:1423−41

doi: 10.1111/1755-0998.13809
[28]

Gompert Z, Feder JL, Parchman TL, Planidin NP, Whiting FJH, et al. 2025. Adaptation repeatedly uses complex structural genomic variation. Science 388:eadp3745

doi: 10.1126/science.adp3745
[29]

Peng Y, Mao K, Zhang Z, Ping J, Jin M, et al. 2024. Landscape of structural variants reveals insights for local adaptations in the Asian corn borer. Cell Reports 43:114928

doi: 10.1016/j.celrep.2024.114928
[30]

Cohen ZP, Schoville SD, Hawthorne DJ. 2023. The role of structural variants in pest adaptation and genome evolution of the Colorado potato beetle, Leptinotarsa decemlineata (Say). Molecular Ecology 32:1425−40

doi: 10.1111/mec.16838
[31]

Koralewski TE, Krutovsky KV. 2011. Evolution of exon-intron structure and alternative splicing. PLoS One 6:e18055

doi: 10.1371/journal.pone.0018055
[32]

Malko DB, Makeev VJ, Mironov AA, Gelfand MS. 2006. Evolution of exon-intron structure and alternative splicing in fruit flies and malarial mosquito genomes. Genome Research 16:505−9

doi: 10.1101/gr.4236606
[33]

Polychronopoulos D, King JWD, Nash AJ, Tan G, Lenhard B. 2017. Conserved non-coding elements: developmental gene regulation meets genome organization. Nucleic Acids Research 45:12611−24

doi: 10.1093/nar/gkx1074
[34]

Gonzalez P, Hauck QC, Baxevanis AD. 2024. Conserved noncoding elements evolve around the same genes throughout metazoan evolution. Genome Biology and Evolution 16:evae052

doi: 10.1093/gbe/evae052
[35]

Paulsen J, Liyakat Ali TM, Nekrasov M, Delbarre E, Baudement MO, et al. 2019. Long-range interactions between topologically associating domains shape the four-dimensional genome during differentiation. Nature Genetics 51:835−43

doi: 10.1038/s41588-019-0392-0
[36]

Ciabrelli F, Cavalli G. 2015. Chromatin-driven behavior of topologically associating domains. Journal of Molecular Biology 427:608−25

doi: 10.1016/j.jmb.2014.09.013
[37]

Mather N, Traves SM, Ho SYW. 2020. A practical introduction to sequentially Markovian coalescent methods for estimating demographic history from genomic data. Ecology and Evolution 10:579−89

doi: 10.1002/ece3.5888
[38]

van Heerwaarden J, van Zanten M, Kruijer W. 2015. Genome-wide association analysis of adaptation using environmentally predicted traits. PLoS Genetics 11:e1005594

doi: 10.1371/journal.pgen.1005594
[39]

Crossley MS, Meier AR, Baldwin EM, Berry LL, Crenshaw LC, et al. 2020. No net insect abundance and diversity declines across US Long Term Ecological Research sites. Nature Ecology & Evolution 4:1368−76

doi: 10.1038/s41559-020-1269-4
[40]

Peng Y, Jin M, Li Z, Li H, Zhang L, et al. 2023. Population genomics provide insights into the evolution and adaptation of the Asia corn borer. Molecular Biology and Evolution 40:msad112

doi: 10.1093/molbev/msad112
[41]

Feder AF, Kryazhimskiy S, Plotkin JB. 2014. Identifying signatures of selection in genetic time series. Genetics 196:509−22

doi: 10.1534/genetics.113.158220
[42]

Cabral-de-Mello DC, Palacios-Gimenez OM. 2025. Repetitive DNAs: the 'invisible' regulators of insect adaptation and speciation. Current Opinion in Insect Science 67:101295

doi: 10.1016/j.cois.2024.101295
[43]

Carvalho CMB, Lupski JR. 2016. Mechanisms underlying structural variant formation in genomic disorders. Nature Reviews Genetics 17:224−38

doi: 10.1038/nrg.2015.25
[44]

An J, Yang J, Wang Y, Wang Y, Xu B, et al. 2019. Targeted next generation sequencing revealed a novel homozygous loss-of-function mutation in ILDR1 gene causes autosomal recessive nonsyndromic sensorineural hearing loss in a Chinese family. Frontiers in Genetics 10:1

doi: 10.3389/fgene.2019.00001
[45]

Burssed B, Zamariolli M, Bellucco FT, Melaragno MI. 2022. Mechanisms of structural chromosomal rearrangement formation. Molecular Cytogenetics 15:23

doi: 10.1186/s13039-022-00600-6
[46]

Tessnow AE, Nagoshi RN, Meagher RL, Gilligan TM, Sadd BM, et al. 2025. Genomic patterns of strain-specific genetic structure, linkage, and selection across fall armyworm populations. BMC Genomics 26:116

doi: 10.1186/s12864-025-11214-8
[47]

Parvizi E, Dhami MK, Yan J, McGaughran A. 2023. Population genomic insights into invasion success in a polyphagous agricultural pest, Halyomorpha halys. Molecular Ecology 32:138−51

doi: 10.1111/mec.16740
[48]

Taylor KL, Hamby KA, DeYonke AM, Gould F, Fritz ML. 2021. Genome evolution in an agricultural pest following adoption of transgenic crops. Proceedings of the National Academy of Sciencesof the United States of America 118:e2020853118

doi: 10.1073/pnas.2020853118
[49]

Hereward JP, Cai X, Matias AMA, Walter GH, Xu C, et al. 2020. Migration dynamics of an important rice pest: the brown planthopper (Nilaparvata lugens) across Asia − insights from population genomics. Evolutionary Applications 13:2449−59

doi: 10.1111/eva.13047
[50]

Durand K, Yainna S, Nam K. 2024. Population genomics unravels a lag phase during the global fall armyworm invasion. Communications Biology 7:957

doi: 10.1038/s42003-024-06634-3
[51]

Sun Z, Fu P, Chen Y, Lu Z, Wan F, et al. 2025. Population genomics of migratory and resident Spodoptera frugiperda reveals key genes and loci driving migration traits. Pest Management Science 81(6):3112−21

doi: 10.1002/ps.8682
[52]

Kauai F, Bafort Q, Mortier F, Van Montagu M, Bonte D, et al. 2024. Interspecific transfer of genetic information through polyploid bridges. Proceedings of the National Academy of Sciences of the United States of America 121:e2400018121

doi: 10.1073/pnas.2400018121
[53]

Matthews CA, Watson-Haigh NS, Burton RA, Sheppard AE. 2024. A gentle introduction to pangenomics. Briefings in Bioinformatics 25:bbae588

doi: 10.1093/bib/bbae588
[54]

Golicz AA, Bayer PE, Bhalla PL, Batley J, Edwards D. 2020. Pangenomics comes of age: from bacteria to plant and animal applications. Trends in Genetics 36:132−45

doi: 10.1016/j.tig.2019.11.006
[55]

Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, et al. 2005. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial 'pan-genome'. Proceedings of the National Academy of Sciences of the United States of America 102:13950−55

doi: 10.1073/pnas.0506758102
[56]

Secomandi S, Gallo GR, Rossi R, Rodríguez Fernandes C, Jarvis ED, et al. 2025. Pangenome graphs and their applications in biodiversity genomics. Nature Genetics 57:13−26

doi: 10.1038/s41588-024-02029-6
[57]

Tong X, Han MJ, Lu K, Tai S, Liang S, et al. 2022. High-resolution silkworm pan-genome provides genetic insights into artificial selection and ecological adaptation. Nature Communications 13:5619

doi: 10.1038/s41467-022-33366-x
[58]

Huang YX, Rao HY, Su BS, Lv JM, Lin JJ, et al. 2025. The pan-genome of Spodoptera frugiperda provides new insights into genome evolution and horizontal gene transfer. Communications Biology 8:407

doi: 10.1038/s42003-025-07707-7
[59]

Ruggieri AA, Livraghi L, Lewis JJ, Evans E, Cicconardi F, et al. 2022. A butterfly pan-genome reveals a large amount of structural variation underlies the evolution of chromatin accessibility. bioRxiv Preprint

doi: 10.1101/2022.04.14.488334
[60]

Card DC, Shapiro B, Giribet G, Moritz C, Edwards SV. 2021. Museum genomics. Annual Review of Genetics 55:633−59

doi: 10.1146/annurev-genet-071719-020506
[61]

Shapiro B, Hofreiter M. 2014. A paleogenomic perspective on evolution and gene function: new insights from ancient DNA. Science 343:1236573

doi: 10.1126/science.1236573
[62]

Nakahama N. 2021. Museum specimens: an overlooked and valuable material for conservation genetics. Ecological Research 36:13−23

doi: 10.1111/1440-1703.12181
[63]

Harper GL, MacLean N, Goulson D. 2006. Analysis of museum specimens suggests extreme genetic drift in the adonis blue butterfly (Polyommatus bellargus). Biological Journal of the Linnean Society 88:447−52

doi: 10.1111/j.1095-8312.2006.00632.x
[64]

Mikheyev AS, Zwick A, Magrath MJL, Grau ML, Qiu L, et al. 2017. Museum genomics confirms that the Lord Howe Island stick insect survived extinction. Current Biology 27:3157−3161.e4

doi: 10.1016/j.cub.2017.08.058
[65]

Freedman JH, van Dorp L, Brace S. 2018. Destructive sampling natural science collections: an overview for museum professionals and researchers. Journal of Natural Science Collections 5:21−34

[66]

Parvizi E, Bachler A, Zwick A, Walsh TK, Moritz C, et al. 2024. Historical museum samples reveal signals of selection and drift in response to changing insecticide use in an agricultural pest moth. Journal of Evolutionary Biology 37:967−77

doi: 10.1093/jeb/voae068
[67]

Cohen ZP, François O, Schoville SD. 2022. Museum genomics of an agricultural super-pest, the Colorado potato beetle, Leptinotarsa decemlineata (Chrysomelidae), provides evidence of adaptation from standing variation. Integrative and Comparative Biology 62:1827−37

doi: 10.1093/icb/icac137
[68]

Skolnick J, Fetrow JS, Kolinski A. 2000. Structural genomics and its importance for gene function analysis. Nature Biotechnology 18:283−87

doi: 10.1038/73723
[69]

Abramson J, Adler J, Dunger J, Evans R, Green T, et al. 2024. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630:493−500

doi: 10.1038/s41586-024-07487-w
[70]

Yip KM, Fischer N, Paknia E, Chari A, Stark H. 2020. Atomic-resolution protein structure determination by cryo-EM. Nature 587:157−61

doi: 10.1038/s41586-020-2833-4
[71]

Munro AW, McLean KJ, Grant JL, Makris TM. 2018. Structure and function of the cytochrome P450 peroxygenase enzymes. Biochemical Society Transactions 46:183−96

doi: 10.1042/BST20170218
[72]

Wang J, Ding MY, Wang J, Liu RM, Li HT, et al. 2020. In silico structure-based investigation of key residues of insecticidal activity of Sip1Aa protein. Frontiers in Microbiology 11:984

doi: 10.3389/fmicb.2020.00984
[73]

Hadiatullah H, Zhang Y, Samurkas A, Xie Y, Sundarraj R, et al. 2022. Recent progress in the structural study of ion channels as insecticide targets. Insect Science 29:1522−51

doi: 10.1111/1744-7917.13032
[74]

Mao F, Guo L, Jin M, Qiao XM, Ye GY, et al. 2019. Molecular cloning and characterization of TRPVs in two rice pests: Nilaparvata lugens (Stål) and Nephotettix cincticeps (Uhler). Pest Management Science 75:1361−69

doi: 10.1002/ps.5254
[75]

Jin P, Bulkley D, Guo Y, Zhang W, Guo Z, et al. 2017. Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. Nature 547:118−22

doi: 10.1038/nature22981
[76]

Lin L, Hao Z, Cao P, Yuchi Z. 2020. Homology modeling and docking study of diamondback moth ryanodine receptor reveals the mechanisms for channel activation, insecticide binding and resistance. Pest Management Science 76:1291−303

doi: 10.1002/ps.5640
[77]

Wei JZ, Lum A, Schepers E, Liu L, Weston RT, et al. 2023. Novel insecticidal proteins from ferns resemble insecticidal proteins from Bacillus thuringiensis. Proceedings of the National Academy of Sciences of the United States of America 120:e2306177120

doi: 10.1073/pnas.2306177120
[78]

Rajab M. 2024. In silico analysis of limonoid-based antifeedants from Melia volkensii targeting the ryanodine receptor in Spodoptera frugiperda. Sciences of Phytochemistry 3:98−104

doi: 10.58920/sciphy0302256
[79]

Choi MY, Jurenka RA. 2010. Site-directed mutagenesis and PBAN activation of the Helicoverpa zea PBAN-receptor. FEBS Letters 584:1212−16

doi: 10.1016/j.febslet.2010.02.033
[80]

Chi B, Li H, Zhang J, Wei P, Gao J, et al. 2019. In silico structure-based identification and validation of key residues of Vip3Aa involving in lepidopteran brush border receptor binding. Applied Biochemistry and Biotechnology 187:1448−59

doi: 10.1007/s12010-018-2880-6
[81]

Wu J, Liu Y, Ou L, Gan T, Zhangding Z, et al. 2024. Transfer of mitochondrial DNA into the nuclear genome during induced DNA breaks. Nature Communications 15:9438

doi: 10.1038/s41467-024-53806-0
[82]

Liang X, Zhang L, Li Z, Xiao Y. 2023. Characterization of the mitochondrial genome of the lawn cutworm Spodoptera depravata (Lepidoptera: Noctuidae). Mitochondrial DNA Part B, Resources 8:310−13

doi: 10.1080/23802359.2023.2179359
[83]

Kurata S, Mano S, Nakahama N, Hirota SK, Suyama Y, et al. 2024. Development of mitochondrial DNA cytochrome c oxidase subunit I primer sets to construct DNA barcoding library using next-generation sequencing. Biodiversity Data Journal 12:e117014

doi: 10.3897/BDJ.12.e117014
[84]

He Y, Ge S, Liang H. 2025. A genome-wide analysis of nuclear mitochondrial DNA sequences (NUMTs) in Chrysomelidae species (Coleoptera). Insects 16:150

doi: 10.3390/insects16020150
[85]

Hebert PDN, Bock DG, Prosser SWJ. 2023. Interrogating 1000 insect genomes for NUMTs: a risk assessment for estimates of species richness. PLoS One 18:e0286620

doi: 10.1371/journal.pone.0286620
[86]

Li H, Liang X, Peng Y, Liu Z, Zhang L, et al. 2024. Novel mito-nuclear combinations facilitate the global invasion of a major agricultural crop pest. Advanced Science 11:2305353

doi: 10.1002/advs.202305353
[87]

Liu X, Liu N, Jing X, Khan H, Yang K, et al. 2024. Genomic and transcriptomic perspectives on the origin and evolution of NUMTs in Orthoptera. Molecular Phylogenetics and Evolution 201:108221

doi: 10.1016/j.ympev.2024.108221
[88]

Bi R, Li Y, Xu M, Zheng Q, Zhang DF, et al. 2022. Direct evidence of CRISPR-Cas9-mediated mitochondrial genome editing. The Innovation 3:100329

doi: 10.1016/j.xinn.2022.100329
[89]

Bonasio R, Tu S, Reinberg D. 2010. Molecular signals of epigenetic states. Science 330:612−16

doi: 10.1126/science.1191078
[90]

Du J, Goodisman MAD. 2024. The role of epigenetics in insects in changing environments. Insect Molecular Biology 33:429−31

doi: 10.1111/imb.12947
[91]

Mukherjee K, Twyman RM, Vilcinskas A. 2015. Insects as models to study the epigenetic basis of disease. Progress in Biophysics and Molecular Biology 118:69−78

doi: 10.1016/j.pbiomolbio.2015.02.009
[92]

Glastad KM, Hunt BG, Goodisman MAD. 2019. Epigenetics in insects: genome regulation and the generation of phenotypic diversity. Annual Review of Entomology 64:185−203

doi: 10.1146/annurev-ento-011118-111914
[93]

Gupta A, Nair S. 2025. Epigenetic processes in insect adaptation to environmental stress. Current Opinion in Insect Science 67:101294

doi: 10.1016/j.cois.2024.101294
[94]

Holoch D, Moazed D. 2015. RNA-mediated epigenetic regulation of gene expression. Nature Reviews Genetics 16:71−84

doi: 10.1038/nrg3863
[95]

Chambeyron S, Seitz H. 2014. Insect small non-coding RNA involved in epigenetic regulations. Current Opinion in Insect Science 1:1−9

doi: 10.1016/j.cois.2014.05.001
[96]

Xue R, Guo R, Li Q, Lin T, Wu Z, et al. 2024. Rice responds to Spodoptera frugiperda infestation via epigenetic regulation of H3K9ac in the jasmonic acid signaling and phenylpropanoid biosynthesis pathways. Plant Cell Reports 43:78

doi: 10.1007/s00299-024-03160-8
[97]

Gupta A, Nair S. 2023. Epigenetic diversity underlying seasonal and annual variations in brown planthopper (BPH) populations as revealed by methylation-sensitive restriction assay. Current Genomics 24:354−67

doi: 10.2174/0113892029276542231205065843
[98]

Bewick AJ, Vogel KJ, Moore AJ, Schmitz RJ. 2017. Evolution of DNA methylation across insects. Molecular Biology and Evolution 34:654−65

doi: 10.1093/molbev/msw264
[99]

Tang Y, Zhang H, Zhu H, Bi S, Wang X, et al. 2024. DNA methylase 1 influences temperature responses and development in the invasive pest Tuta absoluta. Insect Molecular Biology 33:503−15

doi: 10.1111/imb.12919
[100]

Arch M, Vidal M, Koiffman R, Melkie ST, Cardona PJ. 2022. Drosophila melanogaster as a model to study innate immune memory. Frontiers in Microbiology 13:991678

doi: 10.3389/fmicb.2022.991678
[101]

Wang X, Li Z, Zhang Q, Li B, Lu C, et al. 2018. DNA methylation on N6-adenine in lepidopteran Bombyx mori. Biochimica et Biophysica Acta (BBA) − Gene Regulatory Mechanisms 1861:815−25

doi: 10.1016/j.bbagrm.2018.07.013
[102]

Yoon K, Williams S, Duncan EJ. 2024. DNA methylation machinery is involved in development and reproduction in the viviparous pea aphid (Acyrthosiphon pisum). Insect Molecular Biology 33:534−49

doi: 10.1111/imb.12936
[103]

Brevik K, Bueno EM, McKay S, Schoville SD, Chen YH. 2021. Insecticide exposure affects intergenerational patterns of DNA methylation in the Colorado potato beetle, Leptinotarsa decemlineata. Evolutionary Applications 14:746−57

doi: 10.1111/eva.13153
[104]

Mascher M, Jayakodi M, Shim H, Stein N. 2024. Promises and challenges of crop translational genomics. Nature 636:585−93

doi: 10.1038/s41586-024-07713-5
[105]

Silver K, Cooper AM, Zhu KY. 2021. Strategies for enhancing the efficiency of RNA interference in insects. Pest Management Science 77:2645−58

doi: 10.1002/ps.6277
[106]

Nitnavare RB, Bhattacharya J, Singh S, Kour A, Hawkesford MJ, et al. 2021. Next generation dsRNA-based insect control: success so far and challenges. Frontiers in Plant Science 12:673576

doi: 10.3389/fpls.2021.673576
[107]

Sharif MN, Iqbal MS, Alam R, Awan MF, Tariq M, et al. 2022. Silencing of multiple target genes via ingestion of dsRNA and PMRi affects development and survival in Helicoverpa armigera. Scientific Reports 12:10405

doi: 10.1038/s41598-022-14667-z
[108]

Horn T, Narov KD, Panfilio KA. 2022. Persistent parental RNAi in the beetle Tribolium castaneum involves maternal transmission of long double-stranded RNA. Advanced Genetics 3:2100064

doi: 10.1002/ggn2.202100064
[109]

Ashok K, Bhargava CN, Asokan R, Pradeep C, Kennedy JS, et al. 2023. CRISPR/Cas9 mediated mutagenesis of the major sex pheromone gene, acyl-CoA delta-9 desaturase (DES9) in fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). International Journal of Biological Macromolecules 253:126557

doi: 10.1016/j.ijbiomac.2023.126557
[110]

Liu XG, Zhao T, Qiu QQ, Wang CK, Li TL, et al. 2025. CRISPR/Cas9-mediated knockout of the abdominal-B homeotic gene in the global pest, fall armyworm (Spodoptera frugiperda). Insect Molecular Biology 34:162−73

doi: 10.1111/imb.12958
[111]

Fabrick JA, Heu CC, LeRoy DM, DeGain BA, Yelich AJ, et al. 2022. Knockout of ABC transporter gene ABCA2 confers resistance to Bt toxin Cry2Ab in Helicoverpa zea. Scientific Reports 12:16706

doi: 10.1038/s41598-022-21061-2
[112]

Li B, Ritchie MD. 2021. From GWAS to gene: transcriptome-wide association studies and other methods to functionally understand GWAS discoveries. Frontiers in Genetics 12:713230

doi: 10.3389/fgene.2021.713230
[113]

Trujillo D, Mastrangelo T, Estevez de Jensen C, Verle Rodrigues JC, Lawrie R, et al. 2024. Accurate identification of Helicoverpa armigeraHelicoverpa zea hybrids using genome admixture analysis: implications for genomic surveillance. Frontiers in Insect Science 4:1339143

doi: 10.3389/finsc.2024.1339143
[114]

Rupawate PS, Roylawar P, Khandagale K, Gawande S, Ade AB, et al. 2023. Role of gut symbionts of insect pests: a novel target for insect-pest control. Frontiers in Microbiology 14:1146390

doi: 10.3389/fmicb.2023.1146390
[115]

Behnsen J, Huang KC, Sorbara MT, Wang MC, Yu J, et al. 2025. New opportunities in mechanistic and functional microbiome studies. Cell Chemical Biology 32:5−8

doi: 10.1016/j.chembiol.2024.12.012