| [1] |
Xiao Y, Wu K. 2019. Recent progress on the interaction between insects and Bacillus thuringiensis crops. |
| [2] |
Siddiqui JA, Fan R, Naz H, Bamisile BS, Hafeez M, et al. 2023. Insights into insecticide-resistance mechanisms in invasive species: challenges and control strategies. |
| [3] |
Khromykh A, Solomon BD. 2015. The benefits of whole-genome sequencing now and in the future. |
| [4] |
Webster MT, Beaurepaire A, Neumann P, Stolle E. 2023. Population genomics for insect conservation. |
| [5] |
Hotaling S, Sproul JS, Heckenhauer J, Powell A, Larracuente AM, et al. 2021. Long reads are revolutionizing 20 years of insect genome sequencing. |
| [6] |
Pita S, Rico-Porras JM, Lorite P, Mora P. 2025. Genome assemblies and other genomic tools for understanding insect adaptation. |
| [7] |
Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, et al. 2020. metaFlye: scalable long-read metagenome assembly using repeat graphs. |
| [8] |
Wee Y, Bhyan SB, Liu Y, Lu J, Li X, et al. 2019. The bioinformatics tools for the genome assembly and analysis based on third-generation sequencing. |
| [9] |
Cheng H, Concepcion GT, Feng X, Zhang H, Li H. 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. |
| [10] |
Zhao H, Zhou H, Sun G, Dong B, Zhu W, et al. 2024. Telomere-to-telomere genome assembly of the goose Anser cygnoides. |
| [11] |
Feng K, Liu JL, Sun N, Zhou ZQ, Yang ZY, et al. 2025. Telomere-to-telomere genome assembly reveals insights into the adaptive evolution of herbivore-defense mediated by volatile terpenoids in Oenanthe javanica. |
| [12] |
Li WS, Xiao YD, Liu JQ, Li SL, Chen Y, et al. 2024. The T2T genome of the domesticated silkworm Bombyx mori. |
| [13] |
Kawamoto M, Jouraku A, Toyoda A, Yokoi K, Minakuchi Y, et al. 2019. High-quality genome assembly of the silkworm, Bombyx mori. |
| [14] |
Xu Y, Wang C, Li Z, Zheng X, Kang Z, et al. 2024. A chromosome-level haplotype-resolved genome assembly of oriental tobacco budworm (Helicoverpa assulta). |
| [15] |
Zhao YJ, Wang ZQ, Zhu JY, Liu NY. 2020. Identification and characterization of detoxification genes in two cerambycid beetles, Rhaphuma horsfieldi and Xylotrechus quadripes (Coleoptera: Cerambycidae: Clytini). |
| [16] |
Xia J, Xu H, Yang Z, Pan H, Yang X, et al. 2019. Genome-wide analysis of carboxylesterases (COEs) in the whitefly, Bemisia tabaci (Gennadius). |
| [17] |
Wicher D, Miazzi F. 2021. 13 − Insect odorant receptors: function and regulation. In Insect Pheromone Biochemistry and Molecular Biology (Second Edition), eds. Blomquist GJ, Vogt RG. London: Academic Press. pp. 415−33 doi:10.1016/B978-0-12-819628-1.00013-4 |
| [18] |
Zhang L, Li Z, Peng Y, Liang X, Wilson K, et al. 2023. Global genomic signature reveals the evolution of fall armyworm in the Eastern hemisphere. |
| [19] |
Sivashankari S, Shanmughavel P. 2007. Comparative genomics − a perspective. |
| [20] |
Weng YM, Shashank PR, Godfrey RK, Plotkin D, Parker BM, et al. 2024. Evolutionary genomics of three agricultural pest moths reveals rapid evolution of host adaptation and immune-related genes. |
| [21] |
Huang C, Ji B, Shi Z, Wang J, Yuan J, et al. 2025. A comparative genomic analysis at the chromosomal-level reveals evolutionary patterns of aphid chromosomes. |
| [22] |
Wu G, Wu C, Dewer Y, Li P, Hao B, et al. 2024. Comparative genomics reveals evolutionary drivers of the dietary shift in Hemiptera. |
| [23] |
Huang HJ, Cui JR, Hong XY. 2020. Comparative analysis of diet-associated responses in two rice planthopper species. |
| [24] |
Nagoshi RN, Goergen G, Plessis HD, van den Berg J, Meagher R. 2019. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. |
| [25] |
Denecke S, Rankić I, Driva O, Kalsi M, Luong NBH, et al. 2021. Comparative and functional genomics of the ABC transporter superfamily across arthropods. |
| [26] |
Lu Y, Su F, Zhu K, Zhu M, Li Q, et al. 2020. Comparative genomic analysis of C-type lectin-domain genes in seven holometabolous insect species. |
| [27] |
Zhao H, Liu H, Liu Y, Wang C, Ma B, et al. 2023. Chromosome-level genomes of two armyworms, Mythimna separata and Mythimna loreyi, provide insights into the biosynthesis and reception of sex pheromones. |
| [28] |
Gompert Z, Feder JL, Parchman TL, Planidin NP, Whiting FJH, et al. 2025. Adaptation repeatedly uses complex structural genomic variation. |
| [29] |
Peng Y, Mao K, Zhang Z, Ping J, Jin M, et al. 2024. Landscape of structural variants reveals insights for local adaptations in the Asian corn borer. |
| [30] |
Cohen ZP, Schoville SD, Hawthorne DJ. 2023. The role of structural variants in pest adaptation and genome evolution of the Colorado potato beetle, Leptinotarsa decemlineata (Say). |
| [31] |
Koralewski TE, Krutovsky KV. 2011. Evolution of exon-intron structure and alternative splicing. |
| [32] |
Malko DB, Makeev VJ, Mironov AA, Gelfand MS. 2006. Evolution of exon-intron structure and alternative splicing in fruit flies and malarial mosquito genomes. |
| [33] |
Polychronopoulos D, King JWD, Nash AJ, Tan G, Lenhard B. 2017. Conserved non-coding elements: developmental gene regulation meets genome organization. |
| [34] |
Gonzalez P, Hauck QC, Baxevanis AD. 2024. Conserved noncoding elements evolve around the same genes throughout metazoan evolution. |
| [35] |
Paulsen J, Liyakat Ali TM, Nekrasov M, Delbarre E, Baudement MO, et al. 2019. Long-range interactions between topologically associating domains shape the four-dimensional genome during differentiation. |
| [36] |
Ciabrelli F, Cavalli G. 2015. Chromatin-driven behavior of topologically associating domains. |
| [37] |
Mather N, Traves SM, Ho SYW. 2020. A practical introduction to sequentially Markovian coalescent methods for estimating demographic history from genomic data. |
| [38] |
van Heerwaarden J, van Zanten M, Kruijer W. 2015. Genome-wide association analysis of adaptation using environmentally predicted traits. |
| [39] |
Crossley MS, Meier AR, Baldwin EM, Berry LL, Crenshaw LC, et al. 2020. No net insect abundance and diversity declines across US Long Term Ecological Research sites. |
| [40] |
Peng Y, Jin M, Li Z, Li H, Zhang L, et al. 2023. Population genomics provide insights into the evolution and adaptation of the Asia corn borer. |
| [41] |
Feder AF, Kryazhimskiy S, Plotkin JB. 2014. Identifying signatures of selection in genetic time series. |
| [42] |
Cabral-de-Mello DC, Palacios-Gimenez OM. 2025. Repetitive DNAs: the 'invisible' regulators of insect adaptation and speciation. |
| [43] |
Carvalho CMB, Lupski JR. 2016. Mechanisms underlying structural variant formation in genomic disorders. |
| [44] |
An J, Yang J, Wang Y, Wang Y, Xu B, et al. 2019. Targeted next generation sequencing revealed a novel homozygous loss-of-function mutation in ILDR1 gene causes autosomal recessive nonsyndromic sensorineural hearing loss in a Chinese family. |
| [45] |
Burssed B, Zamariolli M, Bellucco FT, Melaragno MI. 2022. Mechanisms of structural chromosomal rearrangement formation. |
| [46] |
Tessnow AE, Nagoshi RN, Meagher RL, Gilligan TM, Sadd BM, et al. 2025. Genomic patterns of strain-specific genetic structure, linkage, and selection across fall armyworm populations. |
| [47] |
Parvizi E, Dhami MK, Yan J, McGaughran A. 2023. Population genomic insights into invasion success in a polyphagous agricultural pest, Halyomorpha halys. |
| [48] |
Taylor KL, Hamby KA, DeYonke AM, Gould F, Fritz ML. 2021. Genome evolution in an agricultural pest following adoption of transgenic crops. |
| [49] |
Hereward JP, Cai X, Matias AMA, Walter GH, Xu C, et al. 2020. Migration dynamics of an important rice pest: the brown planthopper (Nilaparvata lugens) across Asia − insights from population genomics. |
| [50] |
Durand K, Yainna S, Nam K. 2024. Population genomics unravels a lag phase during the global fall armyworm invasion. |
| [51] |
Sun Z, Fu P, Chen Y, Lu Z, Wan F, et al. 2025. Population genomics of migratory and resident Spodoptera frugiperda reveals key genes and loci driving migration traits. |
| [52] |
Kauai F, Bafort Q, Mortier F, Van Montagu M, Bonte D, et al. 2024. Interspecific transfer of genetic information through polyploid bridges. |
| [53] |
Matthews CA, Watson-Haigh NS, Burton RA, Sheppard AE. 2024. A gentle introduction to pangenomics. |
| [54] |
Golicz AA, Bayer PE, Bhalla PL, Batley J, Edwards D. 2020. Pangenomics comes of age: from bacteria to plant and animal applications. |
| [55] |
Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, et al. 2005. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial 'pan-genome'. |
| [56] |
Secomandi S, Gallo GR, Rossi R, Rodríguez Fernandes C, Jarvis ED, et al. 2025. Pangenome graphs and their applications in biodiversity genomics. |
| [57] |
Tong X, Han MJ, Lu K, Tai S, Liang S, et al. 2022. High-resolution silkworm pan-genome provides genetic insights into artificial selection and ecological adaptation. |
| [58] |
Huang YX, Rao HY, Su BS, Lv JM, Lin JJ, et al. 2025. The pan-genome of Spodoptera frugiperda provides new insights into genome evolution and horizontal gene transfer. |
| [59] |
Ruggieri AA, Livraghi L, Lewis JJ, Evans E, Cicconardi F, et al. 2022. A butterfly pan-genome reveals a large amount of structural variation underlies the evolution of chromatin accessibility. |
| [60] |
Card DC, Shapiro B, Giribet G, Moritz C, Edwards SV. 2021. Museum genomics. |
| [61] |
Shapiro B, Hofreiter M. 2014. A paleogenomic perspective on evolution and gene function: new insights from ancient DNA. |
| [62] |
Nakahama N. 2021. Museum specimens: an overlooked and valuable material for conservation genetics. |
| [63] |
Harper GL, MacLean N, Goulson D. 2006. Analysis of museum specimens suggests extreme genetic drift in the adonis blue butterfly (Polyommatus bellargus). |
| [64] |
Mikheyev AS, Zwick A, Magrath MJL, Grau ML, Qiu L, et al. 2017. Museum genomics confirms that the Lord Howe Island stick insect survived extinction. |
| [65] |
Freedman JH, van Dorp L, Brace S. 2018. Destructive sampling natural science collections: an overview for museum professionals and researchers. Journal of Natural Science Collections 5:21−34 |
| [66] |
Parvizi E, Bachler A, Zwick A, Walsh TK, Moritz C, et al. 2024. Historical museum samples reveal signals of selection and drift in response to changing insecticide use in an agricultural pest moth. |
| [67] |
Cohen ZP, François O, Schoville SD. 2022. Museum genomics of an agricultural super-pest, the Colorado potato beetle, Leptinotarsa decemlineata (Chrysomelidae), provides evidence of adaptation from standing variation. |
| [68] |
Skolnick J, Fetrow JS, Kolinski A. 2000. Structural genomics and its importance for gene function analysis. |
| [69] |
Abramson J, Adler J, Dunger J, Evans R, Green T, et al. 2024. Accurate structure prediction of biomolecular interactions with AlphaFold 3. |
| [70] |
Yip KM, Fischer N, Paknia E, Chari A, Stark H. 2020. Atomic-resolution protein structure determination by cryo-EM. |
| [71] |
Munro AW, McLean KJ, Grant JL, Makris TM. 2018. Structure and function of the cytochrome P450 peroxygenase enzymes. |
| [72] |
Wang J, Ding MY, Wang J, Liu RM, Li HT, et al. 2020. In silico structure-based investigation of key residues of insecticidal activity of Sip1Aa protein. |
| [73] |
Hadiatullah H, Zhang Y, Samurkas A, Xie Y, Sundarraj R, et al. 2022. Recent progress in the structural study of ion channels as insecticide targets. |
| [74] |
Mao F, Guo L, Jin M, Qiao XM, Ye GY, et al. 2019. Molecular cloning and characterization of TRPVs in two rice pests: Nilaparvata lugens (Stål) and Nephotettix cincticeps (Uhler). |
| [75] |
Jin P, Bulkley D, Guo Y, Zhang W, Guo Z, et al. 2017. Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. |
| [76] |
Lin L, Hao Z, Cao P, Yuchi Z. 2020. Homology modeling and docking study of diamondback moth ryanodine receptor reveals the mechanisms for channel activation, insecticide binding and resistance. |
| [77] |
Wei JZ, Lum A, Schepers E, Liu L, Weston RT, et al. 2023. Novel insecticidal proteins from ferns resemble insecticidal proteins from Bacillus thuringiensis. |
| [78] |
Rajab M. 2024. In silico analysis of limonoid-based antifeedants from Melia volkensii targeting the ryanodine receptor in Spodoptera frugiperda. |
| [79] |
Choi MY, Jurenka RA. 2010. Site-directed mutagenesis and PBAN activation of the Helicoverpa zea PBAN-receptor. |
| [80] |
Chi B, Li H, Zhang J, Wei P, Gao J, et al. 2019. In silico structure-based identification and validation of key residues of Vip3Aa involving in lepidopteran brush border receptor binding. |
| [81] |
Wu J, Liu Y, Ou L, Gan T, Zhangding Z, et al. 2024. Transfer of mitochondrial DNA into the nuclear genome during induced DNA breaks. |
| [82] |
Liang X, Zhang L, Li Z, Xiao Y. 2023. Characterization of the mitochondrial genome of the lawn cutworm Spodoptera depravata (Lepidoptera: Noctuidae). |
| [83] |
Kurata S, Mano S, Nakahama N, Hirota SK, Suyama Y, et al. 2024. Development of mitochondrial DNA cytochrome c oxidase subunit I primer sets to construct DNA barcoding library using next-generation sequencing. |
| [84] |
He Y, Ge S, Liang H. 2025. A genome-wide analysis of nuclear mitochondrial DNA sequences (NUMTs) in Chrysomelidae species (Coleoptera). |
| [85] |
Hebert PDN, Bock DG, Prosser SWJ. 2023. Interrogating 1000 insect genomes for NUMTs: a risk assessment for estimates of species richness. |
| [86] |
Li H, Liang X, Peng Y, Liu Z, Zhang L, et al. 2024. Novel mito-nuclear combinations facilitate the global invasion of a major agricultural crop pest. |
| [87] |
Liu X, Liu N, Jing X, Khan H, Yang K, et al. 2024. Genomic and transcriptomic perspectives on the origin and evolution of NUMTs in Orthoptera. |
| [88] |
Bi R, Li Y, Xu M, Zheng Q, Zhang DF, et al. 2022. Direct evidence of CRISPR-Cas9-mediated mitochondrial genome editing. |
| [89] |
Bonasio R, Tu S, Reinberg D. 2010. Molecular signals of epigenetic states. |
| [90] |
Du J, Goodisman MAD. 2024. The role of epigenetics in insects in changing environments. |
| [91] |
Mukherjee K, Twyman RM, Vilcinskas A. 2015. Insects as models to study the epigenetic basis of disease. |
| [92] |
Glastad KM, Hunt BG, Goodisman MAD. 2019. Epigenetics in insects: genome regulation and the generation of phenotypic diversity. |
| [93] |
Gupta A, Nair S. 2025. Epigenetic processes in insect adaptation to environmental stress. |
| [94] |
Holoch D, Moazed D. 2015. RNA-mediated epigenetic regulation of gene expression. |
| [95] |
Chambeyron S, Seitz H. 2014. Insect small non-coding RNA involved in epigenetic regulations. |
| [96] |
Xue R, Guo R, Li Q, Lin T, Wu Z, et al. 2024. Rice responds to Spodoptera frugiperda infestation via epigenetic regulation of H3K9ac in the jasmonic acid signaling and phenylpropanoid biosynthesis pathways. |
| [97] |
Gupta A, Nair S. 2023. Epigenetic diversity underlying seasonal and annual variations in brown planthopper (BPH) populations as revealed by methylation-sensitive restriction assay. |
| [98] |
Bewick AJ, Vogel KJ, Moore AJ, Schmitz RJ. 2017. Evolution of DNA methylation across insects. |
| [99] |
Tang Y, Zhang H, Zhu H, Bi S, Wang X, et al. 2024. DNA methylase 1 influences temperature responses and development in the invasive pest Tuta absoluta. |
| [100] |
Arch M, Vidal M, Koiffman R, Melkie ST, Cardona PJ. 2022. Drosophila melanogaster as a model to study innate immune memory. |
| [101] |
Wang X, Li Z, Zhang Q, Li B, Lu C, et al. 2018. DNA methylation on N6-adenine in lepidopteran Bombyx mori. |
| [102] |
Yoon K, Williams S, Duncan EJ. 2024. DNA methylation machinery is involved in development and reproduction in the viviparous pea aphid (Acyrthosiphon pisum). |
| [103] |
Brevik K, Bueno EM, McKay S, Schoville SD, Chen YH. 2021. Insecticide exposure affects intergenerational patterns of DNA methylation in the Colorado potato beetle, Leptinotarsa decemlineata. |
| [104] |
Mascher M, Jayakodi M, Shim H, Stein N. 2024. Promises and challenges of crop translational genomics. |
| [105] |
Silver K, Cooper AM, Zhu KY. 2021. Strategies for enhancing the efficiency of RNA interference in insects. |
| [106] |
Nitnavare RB, Bhattacharya J, Singh S, Kour A, Hawkesford MJ, et al. 2021. Next generation dsRNA-based insect control: success so far and challenges. |
| [107] |
Sharif MN, Iqbal MS, Alam R, Awan MF, Tariq M, et al. 2022. Silencing of multiple target genes via ingestion of dsRNA and PMRi affects development and survival in Helicoverpa armigera. |
| [108] |
Horn T, Narov KD, Panfilio KA. 2022. Persistent parental RNAi in the beetle Tribolium castaneum involves maternal transmission of long double-stranded RNA. |
| [109] |
Ashok K, Bhargava CN, Asokan R, Pradeep C, Kennedy JS, et al. 2023. CRISPR/Cas9 mediated mutagenesis of the major sex pheromone gene, acyl-CoA delta-9 desaturase (DES9) in fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). |
| [110] |
Liu XG, Zhao T, Qiu QQ, Wang CK, Li TL, et al. 2025. CRISPR/Cas9-mediated knockout of the abdominal-B homeotic gene in the global pest, fall armyworm (Spodoptera frugiperda). |
| [111] |
Fabrick JA, Heu CC, LeRoy DM, DeGain BA, Yelich AJ, et al. 2022. Knockout of ABC transporter gene ABCA2 confers resistance to Bt toxin Cry2Ab in Helicoverpa zea. |
| [112] |
Li B, Ritchie MD. 2021. From GWAS to gene: transcriptome-wide association studies and other methods to functionally understand GWAS discoveries. |
| [113] |
Trujillo D, Mastrangelo T, Estevez de Jensen C, Verle Rodrigues JC, Lawrie R, et al. 2024. Accurate identification of Helicoverpa armigera–Helicoverpa zea hybrids using genome admixture analysis: implications for genomic surveillance. |
| [114] |
Rupawate PS, Roylawar P, Khandagale K, Gawande S, Ade AB, et al. 2023. Role of gut symbionts of insect pests: a novel target for insect-pest control. |
| [115] |
Behnsen J, Huang KC, Sorbara MT, Wang MC, Yu J, et al. 2025. New opportunities in mechanistic and functional microbiome studies. |