[1]

Li Z, Bouzayen M. 2025. Plant hormones: a broader understanding of plant development processes for better adapted agriculture. Plant Hormones 1:e001

doi: 10.48130/ph-0025-0001
[2]

Müller M, Wang R, Kudoyarova G. 2023. Editorial: Advances in plant hormone research in the face of a changing environment. Frontiers in Plant Science 14:1239758

doi: 10.3389/fpls.2023.1239758
[3]

Weyers JDB, Paterson NW. 2001. Plant hormones and the control of physiological processes. New Phytologist 152:375−407

doi: 10.1046/j.0028-646X.2001.00281.x
[4]

Šimura J, Antoniadi I, Široká J, Tarkowská D, Strnad M, et al. 2018. Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiology 177:476−89

doi: 10.1104/pp.18.00293
[5]

Hirayama T, Mochida K. 2023. Plant hormonomics: a key tool for deep physiological phenotyping to improve crop productivity. Plant and Cell Physiology 63:1826−39

doi: 10.1093/pcp/pcac067
[6]

Vrobel O, Tarkowski P. 2023. Can plant hormonomics be built on simple analysis? A review. Plant Methods 19:107

doi: 10.1186/s13007-023-01090-2
[7]

Dai X, Shen L. 2022. Advances and trends in omics technology development. Frontiers in Medicine 9:911861

doi: 10.3389/fmed.2022.911861
[8]

Lim J, Park C, Kim M, Kim H, Kim J, et al. 2024. Advances in single-cell omics and multiomics for high-resolution molecular profiling. Experimental and Molecular Medicine 56:515−26

doi: 10.1038/s12276-024-01186-2
[9]

Sarfraz Z, Zarlashat Y, Ambreen A, Mujahid M, Iqbal MS, et al. 2025. Plant biochemistry in the era of omics: Integrated omics approaches to unravel the genetic basis of plant stress tolerance. Plant Breeding Early View

doi: 10.1111/pbr.13277
[10]

Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ. 2018. Next-generation machine learning for biological networks. Cell 173:1581−92

doi: 10.1016/j.cell.2018.05.015
[11]

Yan J, Wang X. 2022. Unsupervised and semi-supervised learning: the next frontier in machine learning for plant systems biology. The Plant Journal 111:1527−38

doi: 10.1111/tpj.15905
[12]

Sarker IH. 2021. Machine learning: algorithms, real-world applications and research directions. SN Computer Science 2:160

doi: 10.1007/s42979-021-00592-x
[13]

Webb S. 2018. Deep learning for biology. Nature 554:555−57

doi: 10.1038/d41586-018-02174-z
[14]

Greener JG, Kandathil SM, Moffat L, Jones DT. 2022. A guide to machine learning for biologists. Nature Reviews Molecular Cell Biology 23:40−55

doi: 10.1038/s41580-021-00407-0
[15]

Koshiba T. 2010. Plant Hormones. Methods and Protocols, 2nd edn. Annals of Botany 105(4):viii

doi: 10.1093/aob/mcq021
[16]

Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y. 1991. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. The Plant Cell 3:677−84

doi: 10.2307/3869249
[17]

Ye L, Wang B, Zhang W, Shan H, Kong H. 2016. Gains and losses of cis-regulatory elements led to divergence of the Arabidopsis APETALA1 and CAULIFLOWER duplicate genes in the time, space, and level of expression and regulation of one paralog by the other. Plant Physiology 171:1055−69

doi: 10.1104/pp.16.00320
[18]

Iohannes SD, Jackson D. 2023. Tackling redundancy: genetic mechanisms underlying paralog compensation in plants. New Phytologist 240:1381−89

doi: 10.1111/nph.19267
[19]

Editorial Team. 2024. Alternate routes to gene functions. Nature Plants 10:1605−6

doi: 10.1038/s41477-024-01870-1
[20]

Hahn A, Harter K. 2009. Mitogen-activated protein kinase cascades and ethylene: Signaling, biosynthesis, or both? Plant Physiology 149:1207−10

doi: 10.1104/pp.108.132241
[21]

Alzwiy IA, Morris PC. 2007. A mutation in the Arabidopsis MAP kinase kinase 9 gene results in enhanced seedling stress tolerance. Plant Science 173:302−8

doi: 10.1016/j.plantsci.2007.06.007
[22]

Xu J, Li Y, Wang Y, Liu H, Lei L, Yang H, et al. 2008. Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. Journal of Biological Chemistry 283:26996−7006

doi: 10.1074/jbc.M801392200
[23]

Denancé N, Sánchez-Vallet A, Goffner D, Molina A. 2013. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Frontiers in Plant Science 4:155

doi: 10.3389/fpls.2013.00155
[24]

Editorial Team. 2016. Meta-analysis in basic biology. Nature Methods 13:959

doi: 10.1038/nmeth.4102
[25]

Sanchez-Munoz R, Depaepe T, Samalova M, Hejatko J, Zaplana I, et al. 2025. Machine-learning meta-analysis reveals ethylene as a central component of the molecular core in abiotic stress responses in Arabidopsis. Nature Communications 16:4778

doi: 10.1038/s41467-025-59542-3
[26]

Stevens K, Johnston IG, Luna E. 2023. Data science approaches provide a roadmap to understanding the role of abscisic acid in defence. Quantitative Plant Biology 4:e2

doi: 10.1017/qpb.2023.1
[27]

Tütüncü M. 2024. Application of machine learning in in vitro propagation of endemic Lilium akkusianum R. Gämperle. PLoS One 19:e0307823

doi: 10.1371/journal.pone.0307823
[28]

Peleke FF, Zumkeller SM, Gültas M, Schmitt A, Szymański J. 2024. Deep learning the cis-regulatory code for gene expression in selected model plants. Nature Communications 15:3488

doi: 10.1038/s41467-024-47744-0
[29]

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583−89

doi: 10.1038/s41586-021-03819-2
[30]

Reiser L, Bakker E, Subramaniam S, Chen X, Sawant S, et al. 2024. The Arabidopsis information resource in 2024. Genetics 227:iyae027

doi: 10.1093/genetics/iyae027
[31]

Murphy KM, Ludwig E, Gutierrez J, Gehan MA. 2024. Deep learning in image-based plant phenotyping. Annual Review of Plant Biology 75:771−95

doi: 10.1146/annurev-arplant-070523-042828
[32]

Lu Z, Peng Y, Cohen T, Ghassemi M, Weng C, et al. 2024. Large language models in biomedicine and health: current research landscape and future directions. Journal of the American Medical Informatics Association 31:1801−11

doi: 10.1093/jamia/ocae202
[33]

Mellin WD. 1957. Work with new electronic 'brains' opens field for army math experts. Hammond Times 10:66

[34]

Hanson B, Stall S, Cutcher-Gershenfeld J, Vrouwenvelder K, Wirz C, et al. 2023. Garbage in, garbage out: mitigating risks and maximizing benefits of AI in research. Nature 623:28−31

doi: 10.1038/d41586-023-03316-8
[35]

Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, et al. 2016. The FAIR guiding principles for scientific data management and stewardship. Scientific Data 3:160018

doi: 10.1038/sdata.2016.18
[36]

Myllyaho L, Raatikainen M, Männistö T, Mikkonen T, Nurminen JK. 2021. Systematic literature review of validation methods for AI systems. Journal of Systems and Software 181:111050

doi: 10.1016/j.jss.2021.111050
[37]

Kapoor S, Narayanan A. 2023. Leakage and the reproducibility crisis in machine-learning-based science. Patterns 4:100804

doi: 10.1016/j.patter.2023.100804
[38]

Wysocka M, Wysocki O, Zufferey M, Landers D, Freitas A. 2023. A systematic review of biologically-informed deep learning models for cancer: fundamental trends for encoding and interpreting oncology data. BMC Bioinformatics 24:198

doi: 10.1186/s12859-023-05262-8
[39]

Gibney E. 2022. Could machine learning fuel a reproducibility crisis in science? Nature 608:250−51

doi: 10.1038/d41586-022-02035-w
[40]

Hossen MI, Awrangjeb M, Pan S, Mamun AA. 2025. Transfer learning in agriculture: a review. Artificial Intelligence Review 58:97

doi: 10.1007/s10462-024-11081-x
[41]

Thangamani R, Sathya D, Kamalam GK, Lyer GN. 2024. AI Green Revolution: Reshaping agriculture's future. In Intelligent robots and drones for precision agriculture, ed. Balasubramanian S, Natarajan G, Chelliah PR. Switzerland: Springer Nature. pp. 421–61. 10.1007/978-3-031-51195-0_19

[42]

Pingali PL. 2012. Green revolution: impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences 109:12302−8

doi: 10.1073/pnas.0912953109
[43]

Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, et al. 1999. 'Green revolution' genes encode mutant gibberellin response modulators. Nature 400:256−61

doi: 10.1038/22307
[44]

Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M. 2017. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science 8:537

doi: 10.3389/fpls.2017.00537
[45]

Zandalinas SI, Mittler R. 2022. Plant responses to multifactorial stress combination. New Phytologist 234:1161−67

doi: 10.1111/nph.18087
[46]

Castillo-Girones S, Munera S, Martínez-Sober M, Blasco J, Cubero S, et al. 2025. Artificial Neural Networks in agriculture, the core of artificial intelligence: what, when, and why. Computers and Electronics in Agriculture 230:109938

doi: 10.1016/j.compag.2025.109938
[47]

Araújo SO, Peres RS, Ramalho JC, Lidon F, Barata J. 2023. Machine learning applications in agriculture: current trends, challenges, and future perspectives. Agronomy 13:2976

doi: 10.3390/agronomy13122976