[1]

Molotoks A, Stehfest E, Doelman J, Albanito F, Fitton N, et al. 2018. Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. Global Change Biology 24:5895−908

doi: 10.1111/gcb.14459
[2]

Tian L, Tao Y, Fu W, Li T, Ren F, et al. 2022. Dynamic simulation of land use/cover change and assessment of forest ecosystem carbon storage under climate change scenarios in Guangdong Province, China. Remote Sensing 14:2330

doi: 10.3390/rs14102330
[3]

Xiao J, Chevallier F, Gomez C, Guanter L, Hicke JA, et al. 2019. Remote sensing of the terrestrial carbon cycle: a review of advances over 50 years. Remote Sensing of Environment 233:111383

doi: 10.1016/j.rse.2019.111383
[4]

Houghton RA, Hall F, Goetz SJ. 2009. Importance of biomass in the global carbon cycle. Journal of Geophysical Research: Biogeosciences 114:G00E03

doi: 10.1029/2009JG000935
[5]

Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, et al. 2011. A large and persistent carbon sink in the world's forests. Science 333:988−93

doi: 10.1126/science.1201609
[6]

Zhao M, Yang J, Zhao N, Liu L, Du L, et al. 2021. Spatially explicit changes in forest biomass carbon of China over the past 4 decades: coupling long-term inventory and remote sensing data. Journal of Cleaner Production 316:128274

doi: 10.1016/j.jclepro.2021.128274
[7]

Fang J, Kato T, Guo Z, Yang Y, Hu H, et al. 2014. Evidence for environmentally enhanced forest growth. Proceedings of the National Academy of Sciences of the United States of America 111:9527−32

doi: 10.1073/pnas.1402333111
[8]

Lu D, Batistella M, Moran E. 2005. Satellite estimation of aboveground biomass and impacts of forest stand structure. Photogrammetric Engineering and Remote Sensing 71:967−74

doi: 10.14358/PERS.71.8.967
[9]

Avitabile V, Camia A. 2018. An assessment of forest biomass maps in Europe using harmonized national statistics and inventory plots. Forest Ecology and Management 409:489−98

doi: 10.1016/j.foreco.2017.11.047
[10]

Du Y, Wang J, Liu Z, Yu H, Li Z, et al. 2019. Evaluation on spaceborne multispectral images, airborne hyperspectral, and lidar data for extracting spatial distribution and estimating aboveground biomass of wetland vegetation Suaeda salsa. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 12:200−9

doi: 10.1109/JSTARS.2018.2886046
[11]

Balestra M, Marselis S, Sankey TT, Cabo C, Liang X, et al. 2024. lidar data fusion to improve forest attribute estimates: a review. Current Forestry Reports 10:281−97

doi: 10.1007/s40725-024-00223-7
[12]

Yan R, Dong Y, Li Y, Xu C, Luan Q, et al. 2024. Enhancing genomic association studies in slash pine through close-range UAV-based morphological phenotyping. Forestry Research 4:e025

doi: 10.48130/forres-0024-0022
[13]

Bazrafkan A, Delavarpour N, Oduor PG, Bandillo N, Flores P. 2023. An overview of using unmanned aerial system mounted sensors to measure plant above-ground biomass. Remote Sensing 15:3543

doi: 10.3390/rs15143543
[14]

da Silva BRF, Ucella-Filho JGM, da Conceição Bispo P, Elera-Gonzales DG, Silva EA, et al. 2024. Using drones for dendrometric estimations in forests: a bibliometric analysis. Forests 15:1993

doi: 10.3390/f15111993
[15]

Liu J, Feng Z, Mannan A, Yang L. 2019. Positioning of coordinates and precision analysis of sample trees using the intelligent forest survey calculator. Computers and Electronics in Agriculture 159:157−64

doi: 10.1016/j.compag.2019.03.003
[16]

Liu J, Feng Z, Yang L, Mannan A, Khan TU, et al. 2018. Extraction of sample plot parameters from 3D point cloud reconstruction based on combined RTK and CCD continuous photography. Remote Sensing 10:1299

doi: 10.3390/rs10081299
[17]

Santoro M, Beaudoin A, Beer C, Cartus O, Fransson JES, et al. 2015. Forest growing stock volume of the Northern Hemisphere: spatially explicit estimates for 2010 derived from Envisat ASAR. Remote Sensing of Environment 168:316−34

doi: 10.1016/j.rse.2015.07.005
[18]

Badreldin N, Sanchez-Azofeifa A. 2015. Estimating forest biomass dynamics by integrating multi-temporal landsat satellite images with ground and airborne lidar data in the coal valley mine, Alberta, Canada. Remote Sensing 7:2832−49

doi: 10.3390/rs70302832
[19]

Kim Y, Chang A, Kim Y, Song J, Kim C. 2012. Estimation of forest biomass from airborne lidar data as measures against global warming-individual tree unit and forest stand unit. Disaster Advances 5:295−99

[20]

Torre-Tojal L, Bastarrika A, Boyano A, Manuel Lopez-Guede JM, Graña M. 2022. Above-ground biomass estimation from lidar data using random forest algorithms. Journal of Computational Science 58:101517

doi: 10.1016/j.jocs.2021.101517
[21]

Yu Q, Yue C, Luo H, Luo F, Duan Y, et al. 2024. Forest AGB estimation based on airborne L-band full-polarization UAVSAR. Forest Engineering 40:17−29 (In Chinese)

doi: 10.7525/j.issn.1006-8023.2024.05.003
[22]

Zhang T, Chen S, Cao S. 2025. Building and application of an estimation method for urban forest aboveground biomass based on UAV lidar and optical images. Journal of Nanjing University of Information Science & Technology 17:581−90 (In Chinese)

doi: 10.13878/j.cnki.jnuist.20240330002
[23]

Liang X, Kankare V, Hyyppä J, Wang Y, Kukko A, et al. 2016. Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing 115:63−77

doi: 10.1016/j.isprsjprs.2016.01.006
[24]

Vauhkonen J, Korpela I, Maltamo M, Tokola T. 2010. Imputation of single-tree attributes using airborne laser scanning-based height, intensity, and alpha shape metrics. Remote Sensing of Environment 114:1263−76

doi: 10.1016/j.rse.2010.01.016
[25]

Hauglin M, Gobakken T, Astrup R, Ene L, Næsset E. 2014. Estimating single-tree crown biomass of Norway spruce by airborne laser scanning: a comparison of methods with and without the use of terrestrial laser scanning to obtain the ground reference data. Forests 5:384−403

doi: 10.3390/f5030384
[26]

Lefsky MA, Cohen WB, Harding DJ, Parker GG, Acker SA, et al. 2002. lidar remote sensing of above-ground biomass in three biomes. Global Ecology and Biogeography 11:393−99

doi: 10.1046/j.1466-822x.2002.00303.x
[27]

Messinger M, Asner GP, Silman M. 2016. Rapid assessments of Amazon forest structure and biomass using small unmanned aerial systems. Remote Sensing 8:615

doi: 10.3390/rs8080615
[28]

Wu H, Xu H. 2023. A review of sampling and modeling techniques for forest biomass inventory. Agricultural & Rural Studies 1:2

doi: 10.59978/ar01010002
[29]

Basuki TM, van Laake PE, Skidmore AK, Hussin YA. 2009. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management 257:1684−94

doi: 10.1016/j.foreco.2009.01.027
[30]

Nelson R, Oderwald R, Gregoire TG. 1997. Separating the ground and airborne laser sampling phases to estimate tropical forest basal area, volume, and biomass. Remote Sensing of Environment 60:311−26

doi: 10.1016/S0034-4257(96)00213-1
[31]

Almeida A, Gonçalves F, Silva G, Souza R, Treuhaft R, et al. 2020. Estimating structure and biomass of a secondary Atlantic forest in Brazil using Fourier transforms of vertical profiles derived from UAV photogrammetry point clouds. Remote Sensing 12:3560

doi: 10.3390/rs12213560
[32]

Bendig J, Bolten A, Bennertz S, Broscheit J, Eichfuss S, et al. 2014. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sensing 6:10395−412

doi: 10.3390/rs61110395
[33]

Wang X, Wang S, Dai L. 2018. Estimating and mapping forest biomass in Northeast China using joint forest resources inventory and remote sensing data. Journal of Forestry Research 29:797−811

doi: 10.1007/s11676-017-0504-6
[34]

Zhang D, Ni H. 2023. Inversion of forest biomass based on multi-source remote sensing images. Sensors 23:9313

doi: 10.3390/s23239313
[35]

Oehmcke S, Li L, Trepekli K, Revenga JC, Nord-Larsen T, et al. 2024. Deep point cloud regression for above-ground forest biomass estimation from airborne lidar. Remote Sensing of Environment 302:113968

doi: 10.1016/j.rse.2023.113968
[36]

Liu H, Mou C, Yuan J, Chen Z, Zhong L, et al. 2024. Estimating urban forests biomass with lidar by using deep learning foundation models. Remote Sensing 16:1643

doi: 10.3390/rs16091643
[37]

Huy B, Truong NQ, Khiem NQ, Poudel KP, Temesgen H. 2022. Deep learning models for improved reliability of tree aboveground biomass prediction in the tropical evergreen broadleaf forests. Forest Ecology and Management 508:120031

doi: 10.1016/j.foreco.2022.120031
[38]

Choi K, Lim W, Chang B, Jeong J, Kim I, et al. 2022. An automatic approach for tree species detection and profile estimation of urban street trees using deep learning and Google street view images. ISPRS Journal of Photogrammetry and Remote Sensing 190:165−80

doi: 10.1016/j.isprsjprs.2022.06.004
[39]

Huy B, Truong NQ, Poudel KP, Temesgen H, Khiem NQ. 2024. Multi-output deep learning models for enhanced reliability of simultaneous tree above- and below-ground biomass predictions in tropical forests of Vietnam. Computers and Electronics in Agriculture 222:109080

doi: 10.1016/j.compag.2024.109080
[40]

Tian X, Li J, Zhang F, Zhang H, Jiang M. 2024. Forest aboveground biomass estimation using multisource remote sensing data and deep learning algorithms: a case study over Hangzhou area in China. Remote Sensing 16:1074

doi: 10.3390/rs16061074
[41]

Central People's Government of the People' s Republic of China. 2021. The fifth plenary session of the 19th CPC Central Committee held in Beijing from October 26 to 29 adopted the Party leadership's proposals for formulating the 14th Five-Year Plan (2021−2025) for National Economic and Social Development and the Long-Range Objectives Through the Year 2035

[42]

Zhang R, Zhou X, Ouyang Z, Avitabile V, Qi J, et al. 2019. Estimating aboveground biomass in subtropical forests of China by integrating multisource remote sensing and ground data. Remote Sensing of Environment 232:111341

doi: 10.1016/j.rse.2019.111341
[43]

Luo Y, Hui D, Zhang D. 2006. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87:53−63

doi: 10.1890/04-1724
[44]

Zhang Z, Zhu L. 2023. A review on unmanned aerial vehicle remote sensing: platforms, sensors, data processing methods, and applications. Drones 7:398

doi: 10.3390/drones7060398
[45]

Brede B, Terryn L, Barbier N, Bartholomeus HM, Bartolo R, et al. 2022. Non-destructive estimation of individual tree biomass: allometric models, terrestrial and UAV laser scanning. Remote Sensing of Environment 280:113180

doi: 10.1016/j.rse.2022.113180
[46]

Tao Z, Yi L, Bao A, Xu W, Wang Z, et al. 2024. UAV or satellites? How to find the balance between efficiency and accuracy in above ground biomass estimation of artificial young coniferous forest? International Journal of Applied Earth Observation and Geoinformation 134:104173

doi: 10.1016/j.jag.2024.104173
[47]

Ferreira MP, Martins GB, de Almeida TMH, da Silva Ribeiro R, da Veiga VF Jr, et al. 2024. Estimating aboveground biomass of tropical urban forests with UAV-borne hyperspectral and lidar data. Urban Forestry & Urban Greening 96:128362

doi: 10.1016/j.ufug.2024.128362
[48]

Huang W, Dolan K, Swatantran A, Johnson K, Tang H, et al. 2019. High-resolution mapping of aboveground biomass for forest carbon monitoring system in the Tri-State region of Maryland, Pennsylvania and Delaware, USA. Environmental Research Letters 14:095002

doi: 10.1088/1748-9326/ab2917
[49]

Zurqani HA. 2025. A multi-source approach combining GEDI lidar, satellite data, and machine learning algorithms for estimating forest aboveground biomass on Google Earth Engine platform. Ecological Informatics 86:103052

doi: 10.1016/j.ecoinf.2025.103052
[50]

Liu X, Dong L, Li S, Li Z, Wang Y, et al. 2024. Improving AGB estimations by integrating tree height and crown radius from multisource remote sensing. PLoS One 19:e0311642

doi: 10.1371/journal.pone.0311642
[51]

Chen Q, McRoberts RE, Wang C, Radtke PJ. 2016. Forest aboveground biomass mapping and estimation across multiple spatial scales using model-based inference. Remote Sensing of Environment 184:350−60

doi: 10.1016/j.rse.2016.07.023
[52]

Stovall AEL, Vorster AG, Anderson RS, Evangelista PH, Shugart HH. 2017. Non-destructive aboveground biomass estimation of coniferous trees using terrestrial lidar. Remote Sensing of Environment 200:31−42

doi: 10.1016/j.rse.2017.08.013
[53]

Liang X, Kukko A, Balenović I, Saarinen N, Junttila S, et al. 2022. Close-range remote sensing of forests: the state of the art, challenges, and opportunities for systems and data acquisitions. IEEE Geoscience and Remote Sensing Magazine 10:32−71

doi: 10.1109/MGRS.2022.3168135
[54]

Wang D, Momo Takoudjou S, Casella E. 2020. LeWoS: a universal leaf-wood classification method to facilitate the 3D modelling of large tropical trees using terrestrial lidar. Methods in Ecology and Evolution 11:376−89

doi: 10.1111/2041-210X.13342
[55]

Gómez-Díaz JD, Etchevers-Barra JD, Monterrosos-Rivas AI, Campo-Alvez J, Tinoco-Rueda JA. 2011. Allometric equations for estimating the above-ground biomass and carbon in Quercus magnoliaefolia Née. Revista Chapingo Serie Ciencias Forestales y del Ambiente 17:261−72

doi: 10.5154/r.rchscfa.2010.11.117
[56]

Hemming-Schroeder NM, Gutierrez AA, Allison SD, Randerson JT. 2023. Estimating individual tree mortality in the Sierra Nevada using lidar and multispectral reflectance data. Journal of Geophysical Research: Biogeosciences 128:e2022JG007234

doi: 10.1029/2022JG007234
[57]

Maltamo M, Eerikäinen K, Pitkänen J, Hyyppä J, Vehmas M. 2004. Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sensing of Environment 90:319−30

doi: 10.1016/j.rse.2004.01.006
[58]

Næsset E. 1997. Determination of mean tree height of forest stands using airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing 52:49−56

doi: 10.1016/S0924-2716(97)83000-6
[59]

Apostol B, Lorent A, Petrila M, Gancz V, Badea O. 2016. Height extraction and stand volume estimation based on fusion airborne lidar data and terrestrial measurements for a norway spruce [Picea abies (L.) Karst.] test site in Romania. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 44:313−23

doi: 10.15835/nbha44110155
[60]

Qin H, Zhou W, Yao Y, Wang W. 2021. Estimating aboveground carbon stock at the scale of individual trees in subtropical forests using UAV lidar and hyperspectral data. Remote Sensing 13:4969

doi: 10.3390/rs13244969
[61]

Tang H, Ma L, Lister A, O'Neill-Dunne J, Lu J, et al. 2021. High-resolution forest carbon mapping for climate mitigation baselines over the RGGI region, USA. Environmental Research Letters 16:035011

doi: 10.1088/1748-9326/abd2ef
[62]

Ene LT, Næsset E, Gobakken T, Bollandsås OM, Mauya EW, et al. 2017. Large-scale estimation of change in aboveground biomass in miombo woodlands using airborne laser scanning and national forest inventory data. Remote Sensing of Environment 188:106−17

doi: 10.1016/j.rse.2016.10.046
[63]

Hansen EH, Gobakken T, Solberg S, Kangas A, Ene L, et al. 2015. Relative efficiency of ALS and InSAR for biomass estimation in a Tanzanian rainforest. Remote Sensing 7:9865−85

doi: 10.3390/rs70809865
[64]

Qin H, Zhou W, Yao Y, Wang W. 2022. Individual tree segmentation and tree species classification in subtropical broadleaf forests using UAV-based lidar, hyperspectral, and ultrahigh-resolution RGB data. Remote Sensing of Environment 280:113143

doi: 10.1016/j.rse.2022.113143
[65]

Cho MA, Skidmore A, Corsi F, van Wieren SE, Sobhan I. 2007. Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. International Journal of Applied Earth Observation and Geoinformation 9:414−24

doi: 10.1016/j.jag.2007.02.001
[66]

Jiang R, Sanchez-Azofeifa A, Laakso K, Xu Y, Zhou Z, et al. 2021. Cloud cover throughout all the paddy rice fields in Guangdong, China: impacts on sentinel 2 MSI and landsat 8 OLI optical observations. Remote Sensing 13:2961

doi: 10.3390/rs13152961
[67]

Yang T, Yu Y, Yang X, Du H. 2023. UAV hyperspectral combined with lidar to estimate chlorophyll content at the stand and individual tree scales. Chinese Journal of Applied Ecology 34:2101−12

doi: 10.13287/j.1001-9332.202308.004
[68]

Mutanga O, Skidmore AK. 2004. Narrow band vegetation indices overcome the saturation problem in biomass estimation. International Journal of Remote Sensing 25:3999−4014

doi: 10.1080/01431160310001654923
[69]

Puliti S, Hauglin M, Breidenbach J, Montesano P, Neigh CSR, et al. 2020. Modelling above-ground biomass stock over Norway using national forest inventory data with ArcticDEM and Sentinel-2 data. Remote Sensing of Environment 236:111501

doi: 10.1016/j.rse.2019.111501
[70]

Hao Q, Huang C. 2023. A review of forest aboveground biomass estimation based on remote sensing data. Journal of Plant Ecology 47:1356−74

doi: 10.17521/cjpe.2023.0008
[71]

Zou W, Zeng W. 2025. Research Advances in Estimation of Forest Biomass and Carbon Storage. World Forestry Research 38:32−38 (In Chinese)

doi: 10.13348/j.cnki.sjlyyj.2025.0031.y
[72]

Hauglin M, Astrup R, Gobakken T, Næsset E. 2013. Estimating single-tree branch biomass of Norway spruce with terrestrial laser scanning using voxel-based and crown dimension features. Scandinavian Journal of Forest Research 28:456−69

doi: 10.1080/02827581.2013.777772
[73]

Du L, Zhou T, Zou Z, Zhao X, Huang K, et al. 2014. Mapping forest biomass using remote sensing and national forest inventory in China. Forests 5:1267−83

doi: 10.3390/f5061267
[74]

Beyene SM. 2020. Estimation of forest variable and aboveground biomass using Terrestrial laser scanning in the tropical rainforest. Journal of the Indian Society of Remote Sensing 48:853−63

doi: 10.1007/s12524-020-01119-2
[75]

Bargali K, Manral V, Padalia K, Bargali SS, Upadhyay VP. 2018. Effect of vegetation type and season on microbial biomass carbon in central himalayan forest soils, India. CATENA 171:125−35

doi: 10.1016/j.catena.2018.07.001
[76]

Liu J, Guo Y, Yang J, Zhu N, Dai W, et al. 2024. Forest point cloud registration: a review. Forestry Research 4:e018

doi: 10.48130/forres-0024-0015
[77]

Liu J, Guo Y, Zeng J, Chen Z, Wang H, et al. 2024. Forest point cloud registration using the tree top and the ground-level tree center. Transactions of the Chinese Society of Agricultural Engineering 40:127−34 (In Chinese)

doi: 10.11975/j.issn.1002-6819.202403086
[78]

Yan M, Xia Y, Yang X, Wu X, Yang M, et al. 2023. Biomass estimation of subtropical arboreal forest at single tree scale based on feature fusion of airborne lidar data and aerial images. Sustainability 15:1676

doi: 10.3390/su15021676
[79]

Ahmed S, Hilmers T, Uhl E, Tupinambá-Simões F, Ordóñez C, et al. 2025. From suppressed to dominant: 3D crown shapes explain the "to grow or wait" growth behavior in close-to-nature forests. Forest Ecology and Management 592:122814

doi: 10.1016/j.foreco.2025.122814
[80]

Li J, Zhang W, Diao W, Feng Y, Sun X, et al. 2022. CSF-net: color spectrum fusion network for semantic labeling of airborne laser scanning point cloud. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 15:339−52

doi: 10.1109/JSTARS.2021.3133602
[81]

Pang Y, Zhao F, Li Z, Zhou S, Deng G, et al. 2008. Forest height inversion using airborne lidar technology. Journal of Remote Sensing 12:152−58 (In Chinese)

[82]

Mascaro J, Detto M, Asner GP, Muller-Landau HC. 2011. Evaluating uncertainty in mapping forest carbon with airborne lidar. Remote Sensing of Environment 115:3770−74

doi: 10.1016/j.rse.2011.07.019
[83]

Breidenbach J, Antón-Fernández C, Petersson H, McRoberts RE, Astrup R. 2014. Quantifying the model-related variability of biomass stock and change estimates in the Norwegian national forest inventory. Forest Science 60:25−33

doi: 10.5849/forsci.12-137
[84]

Gao BC, Li RR. 2000. Quantitative improvement in the estimates of NDVI values from remotely sensed data by correcting thin cirrus scattering effects. Remote Sensing of Environment 74:494−502

doi: 10.1016/S0034-4257(00)00141-3
[85]

Keller M, Palace M, Hurtt G. 2001. Biomass estimation in the Tapajos National Forest, Brazil: examination of sampling and allometric uncertainties. Forest Ecology and Management 154:371−82

doi: 10.1016/S0378-1127(01)00509-6
[86]

Ercanlı İ. 2020. Innovative deep learning artificial intelligence applications for predicting relationships between individual tree height and diameter at breast height. Forest Ecosystems 7:12

doi: 10.1186/s40663-020-00226-3
[87]

Fararoda R, Reddy RS, Rajashekar G, Kiran Chand TR, Jha CS, et al. 2021. Improving forest above ground biomass estimates over indian forests using multi source data sets with machine learning algorithm. Ecological Informatics 65:101392

doi: 10.1016/j.ecoinf.2021.101392
[88]

Peng X, Zhao A, Chen Y, Chen Q, Liu H. 2021. Tree height measurements in degraded tropical forests based on UAV-lidar data of different point cloud densities: a case study on Dacrydium pierrei in China. Forests 12:328

doi: 10.3390/f12030328
[89]

Leuschner C, Moser G, Bertsch C, Röderstein M, Hertel D. 2007. Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic and Applied Ecology 8:219−30

doi: 10.1016/j.baae.2006.02.004
[90]

Maltamo M, Kinnunen H, Kangas A, Korhonen L. 2020. Predicting stand age in managed forests using national forest inventory field data and airborne laser scanning. Forest Ecosystems 7:44

doi: 10.1186/s40663-020-00254-z
[91]

Wu J, Zhu J, Ai X, Yao L, Guo Q, et al. 2023. Meta-analysis of woody plant biomass models in subtropical evergreen and deciduous broad-leaved mixed forests. Journal of Central South University of Forestry and Technology 43:111−22 ( In Chinese)

[92]

Dai W, Kan H, Tan R, Yang B, Guan Q, et al. 2022. Multisource forest point cloud registration with semantic-guided keypoints and robust RANSAC mechanisms. International Journal of Applied Earth Observation and Geoinformation 115:103105

doi: 10.1016/j.jag.2022.103105
[93]

Wang Y, Zhao J, Guo Z, Yang H, Li N. 2023. Soil moisture inversion based on data augmentation method using multi-source remote sensing data. Remote Sensing 15:1899

doi: 10.3390/rs15071899
[94]

Tian L, Wu X, Tao Y, Li M, Qian C, et al. 2023. Review of remote sensing-based methods for forest aboveground biomass estimation: progress, challenges, and prospects. Forests 14:1086

doi: 10.3390/f14061086
[95]

Fang J, Brown S, Tang Y, Nabuurs GJ, Wang X, et al. 2006. Overestimated biomass carbon pools of the northern mid- and high latitude forests. Climatic Change 74:355−68

doi: 10.1007/s10584-005-9028-8
[96]

Zhu Y, Feng Z, Lu J, Liu J. 2020. Estimation of forest biomass in Beijing (China) using multisource remote sensing and forest inventory data. Forests 11:163

doi: 10.3390/f11020163
[97]

Clark ML, Clark DB, Roberts DA. 2004. Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape. Remote Sensing of Environment 91:68−89

doi: 10.1016/j.rse.2004.02.008
[98]

Hall RJ, Skakun RS, Arsenault EJ, Case BS. 2006. Modeling forest stand structure attributes using Landsat ETM+ data: application to mapping of aboveground biomass and stand volume. Forest Ecology and Management 225:378−90

doi: 10.1016/j.foreco.2006.01.014
[99]

Main-Knorn M, Moisen GG, Healey SP, Keeton WS, Freeman EA, et al. 2011. Evaluating the remote sensing and inventory-based estimation of biomass in the western carpathians. Remote Sensing 3:1427−46

doi: 10.3390/rs3071427
[100]

Zhuang H, Zhang Z, Cheng F, Han J, Luo Y, et al. 2024. Integrating data assimilation, crop model, and machine learning for winter wheat yield forecasting in the North China Plain. Agricultural and Forest Meteorology 347:109909

doi: 10.1016/j.agrformet.2024.109909