[1]

Wong WL, Su X, Li X, Cheung CMG, Klein R, et al. 2014. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. The Lancet Global Health 2:e106−e116

doi: 10.1016/S2214-109X(13)70145-1
[2]

Rein DB, Wittenborn JS, Burke-Conte Z, Gulia R, Robalik T, et al. 2022. Prevalence of age-related macular degeneration in the US in 2019. JAMA Ophthalmology 140:1202−208

doi: 10.1001/jamaophthalmol.2022.4401
[3]

Hamel C. 2006. Retinitis pigmentosa. Orphanet Journal of Rare Diseases 1:40

doi: 10.1186/1750-1172-1-40
[4]

Vingolo EM, Mascolo S, Miccichè F, Manco G. 2024. Retinitis pigmentosa: from pathomolecular mechanisms to therapeutic strategies. Medicina 60:189

doi: 10.3390/medicina60010189
[5]

Steinmetz JD, Bourne RRA, Briant PS, Flaxman SR, Taylor HRB, et al. 2021. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. The Lancet Global Health 9:e144−e160

doi: 10.1016/S2214-109X(20)30489-7
[6]

Verbakel SK, van Huet RAC, Boon CJF, den Hollander AI, Collin RWJ, et al. 2018. Non-syndromic retinitis pigmentosa. Progress in Retinal and Eye Research 66:157−86

doi: 10.1016/j.preteyeres.2018.03.005
[7]

Dowling JE. 2020. Restoring vision to the blind. Science 368:827−28

doi: 10.1126/science.aba2623
[8]

Burton MJ, Ramke J, Marques AP, Bourne RRA, Congdon N, et al. 2021. The Lancet Global Health Commission on Global Eye Health: vision beyond 2020. The Lancet Global Health 9:e489−e551

doi: 10.1016/S2214-109X(20)30488-5
[9]

Iwasawa K, Takebe T. 2021. Organogenesis in vitro. Current opinion in Cell Biology 73:84−91

doi: 10.1016/j.ceb.2021.06.007
[10]

Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, et al. 2011. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51−56

doi: 10.1038/nature09941
[11]

Mariani J, Vaccarino FM. 2019. Breakthrough moments: Yoshiki Sasai's discoveries in the third dimension. Cell Stem Cell 24:837−38

doi: 10.1016/j.stem.2019.05.007
[12]

Nakano T, Ando S, Takata N, Kawada M, Muguruma K, et al. 2012. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771−85

doi: 10.1016/j.stem.2012.05.009
[13]

Zhong X, Gutierrez C, Xue T, Hampton C, Vergara MN, et al. 2014. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nature Communications 5:4047

doi: 10.1038/ncomms5047
[14]

Regent F, Chen HY, Kelley RA, Qu Z, Swaroop A, et al. 2020. A simple and efficient method for generating human retinal organoids. Molecular Vision 26:97−105

[15]

Lowe A, Harris R, Bhansali P, Cvekl A, Liu W. 2016. Intercellular adhesion-dependent cell survival and ROCK-regulated actomyosin-driven forces mediate self-formation of a retinal organoid. Stem Cell Reports 6:743−56

doi: 10.1016/j.stemcr.2016.03.011
[16]

Kim S, Lowe A, Dharmat R, Lee S, Owen LA, et al. 2019. Generation, transcriptome profiling, and functional validation of cone-rich human retinal organoids. Proceedings of the National Academy of Sciences of the United States of America 116:10824−33

doi: 10.1073/pnas.1901572116
[17]

Reichman S, Slembrouck A, Gagliardi G, Chaffiol A, Terray A, et al. 2017. Generation of storable retinal organoids and retinal pigmented epithelium from adherent human iPS cells in xeno-free and feeder-free conditions. Stem Cells 35:1176−88

doi: 10.1002/stem.2586
[18]

Capowski EE, Samimi K, Mayerl SJ, Phillips MJ, Pinilla I, et al. 2019. Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines. Development 146:dev171686

doi: 10.1242/dev.171686
[19]

Jin ZB, Okamoto S, Xiang P, Takahashi M. 2012. Integration-free induced pluripotent stem cells derived from retinitis pigmentosa patient for disease modeling. Stem Cells Translational Medicine 1:503−9

doi: 10.5966/sctm.2012-0005
[20]

Norrie JL, Nityanandam A, Lai K, Chen X, Wilson M, et al. 2021. Retinoblastoma from human stem cell-derived retinal organoids. Nature Communications 12:4535

doi: 10.1038/s41467-021-24781-7
[21]

Saengwimol D, Rojanaporn D, Chaitankar V, Chittavanich P, Aroonroch R, et al. 2018. A three-dimensional organoid model recapitulates tumorigenic aspects and drug responses of advanced human retinoblastoma. Scientific Reports 8:15664

doi: 10.1038/s41598-018-34037-y
[22]

Santos-Ferreira TF, Borsch O, Ader M. 2017. Rebuilding the missing part − a review on photoreceptor transplantation. Frontiers in Systems Neuroscience 10:105

doi: 10.3389/fnsys.2016.00105
[23]

del Cerro M, Notter MF, del Cerro C, Wiegand SJ, Grover DA, et al. 1989. Intraretinal transplantation for rod-cell replacement in light-damaged retinas. Journal of Neural Transplantation 1:1−10

doi: 10.1155/NP.1989.1
[24]

Gouras P, Du J, Gelanze M, Kwun R, Kjeldbye H, et al. 1991. Transplantation of photoreceptors labeled with tritiated thymidine into RCS rats. Investigative Ophthalmology & Visual Science 32:1704−707

[25]

Kwan AS, Wang S, Lund RD. 1999. Photoreceptor layer reconstruction in a rodent model of retinal degeneration. Experimental Neurology 159:21−33

doi: 10.1006/exnr.1999.7157
[26]

Radtke ND, Aramant RB, Petry HM, Green PT, Pidwell DJ, et al. 2008. Vision improvement in retinal degeneration patients by implantation of retina together with retinal pigment epithelium. American Journal of Ophthalmology 146:172−82

doi: 10.1016/j.ajo.2008.04.009
[27]

Aït-Ali N, Fridlich R, Millet-Puel G, Clérin E, Delalande F, et al. 2015. Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis. Cell 161:817−32

doi: 10.1016/j.cell.2015.03.023
[28]

Eberle D, Kurth T, Santos-Ferreira T, Wilson J, Corbeil D, et al. 2012. Outer segment formation of transplanted photoreceptor precursor cells. PLoS One 7:e46305

doi: 10.1371/journal.pone.0046305
[29]

Hambright D, Park KY, Brooks M, McKay R, Swaroop A, et al. 2012. Long-term survival and differentiation of retinal neurons derived from human embryonic stem cell lines in un-immunosuppressed mouse retina. Molecular Vision 18:920−36

[30]

Pearson RA, Gonzalez-Cordero A, West EL, Ribeiro JR, Aghaizu N, et al. 2016. Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nature Communications 7:13029

doi: 10.1038/ncomms13029
[31]

Sanges D, Simonte G, Di Vicino U, Romo N, Pinilla I, et al. 2016. Reprogramming Müller glia via in vivo cell fusion regenerates murine photoreceptors. Journal of Clinical Investigation 126:3104−16

doi: 10.1172/JCI85193
[32]

Santos-Ferreira T, Llonch S, Borsch O, Postel K, Haas J, et al. 2016. Retinal transplantation of photoreceptors results in donor−host cytoplasmic exchange. Nature Communications 7:13028

doi: 10.1038/ncomms13028
[33]

Ortin-Martinez A, Tsai ELS, Nickerson PE, Bergeret M, Lu Y, et al. 2017. A reinterpretation of cell transplantation: GFP transfer from donor to host photoreceptors. Stem Cells 35:932−39

doi: 10.1002/stem.2552
[34]

Chichagova V, Hallam D, Collin J, Zerti D, Dorgau B, et al. 2018. Cellular regeneration strategies for macular degeneration: past, present and future. Eye 32:946−71

doi: 10.1038/s41433-018-0061-z
[35]

Ho MT, Kawai K, Abdo D, Comanita L, Ortin-Martinez A, et al. 2024. Transplanted human photoreceptors transfer cytoplasmic material but not to the recipient mouse retina. Stem Cell Research & Therapy 15:79

doi: 10.1186/s13287-024-03679-3
[36]

Woch G, Aramant RB, Seiler MJ, Sagdullaev BT, McCall MA. 2001. Retinal transplants restore visually evoked responses in rats with photoreceptor degeneration. Investigative Ophthalmology & Visual Science 42:1669−76

[37]

Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, et al. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282:1145−47

doi: 10.1126/science.282.5391.1145
[38]

Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, et al. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861−72

doi: 10.1016/j.cell.2007.11.019
[39]

Pan D, Xia XX, Zhou H, Jin SQ, Lu YY, et al. 2020. COCO enhances the efficiency of photoreceptor precursor differentiation in early human embryonic stem cell-derived retinal organoids. Stem Cell Research & Therapy 11:366

doi: 10.1186/s13287-020-01883-5
[40]

Fligor CM, Lavekar SS, Harkin J, Shields PK, VanderWall KB, et al. 2021. Extension of retinofugal projections in an assembled model of human pluripotent stem cell-derived organoids. Stem Cell Reports 16:2228−41

doi: 10.1016/j.stemcr.2021.05.009
[41]

Wagstaff EL, ten Asbroek ALMA, ten Brink JB, Jansonius NM, Bergen AAB. 2021. An alternative approach to produce versatile retinal organoids with accelerated ganglion cell development. Scientific Reports 11:1101

doi: 10.1038/s41598-020-79651-x
[42]

Chao JR, Lamba DA, Klesert TR, Torre A, Hoshino A, et al. 2017. Transplantation of human embryonic stem cell-derived retinal cells into the subretinal space of a non-human primate. Translational Vision Science & Technology 6:4

doi: 10.1167/tvst.6.3.4
[43]

Osakada F, Ikeda H, Mandai M, Wataya T, Watanabe K, et al. 2008. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nature Biotechnology 26:215−24

doi: 10.1038/nbt1384
[44]

Occelli LM, Marinho F, Singh RK, Binette F, Nasonkin IO, et al. 2021. Subretinal transplantation of human embryonic stem cell-derived retinal tissue in a feline large animal model. Journal of Visualized Experiments e61683

doi: 10.3791/61683
[45]

Klymenko V, González Martínez OG, Zarbin MA. 2024. Recent progress in photoreceptor cell-based therapy for degenerative retinal disease. Stem Cells Translational Medicine 13:332−45

doi: 10.1093/stcltm/szae005
[46]

Lakowski J, Han YT, Pearson RA, Gonzalez-Cordero A, West EL, et al. 2011. Effective transplantation of photoreceptor precursor cells selected via cell surface antigen expression. Stem Cells 29:1391−404

doi: 10.1002/stem.694
[47]

Stone NE, Voigt AP, Cooke JA, Giacalone JC, Hanasoge S, et al. 2020. Label-free microfluidic enrichment of photoreceptor cells. Experimental Eye Research 199:108166

doi: 10.1016/j.exer.2020.108166
[48]

Gasparini SJ, Tessmer K, Reh M, Wieneke S, Carido M, et al. 2022. Transplanted human cones incorporate into the retina and function in a murine cone degeneration model. Journal of Clinical Investigation 132:e154619

doi: 10.1172/JCI154619
[49]

Lamba DA, Gust J, Reh TA. 2009. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell 4:73−79

doi: 10.1016/j.stem.2008.10.015
[50]

Yao J, Feathers KL, Khanna H, Thompson D, Tsilfidis C, et al. 2011. XIAP therapy increases survival of transplanted rod precursors in a degenerating host retina. Investigative Ophthalmology & Visual Science 52:1567−72

doi: 10.1167/iovs.10-5998
[51]

Guo Q, Zeng YX, Huang SD, Zou T, Yin ZQ. 2023. Organoid-derived human retinal progenitor cells promote early dedifferentiation of Müller glia in Royal College of Surgeons rats. International Journal of Ophthalmology 16:483−98

doi: 10.18240/ijo.2023.04.01
[52]

Zerti D, Hilgen G, Dorgau B, Collin J, Ader M, et al. 2021. Transplanted pluripotent stem cell-derived photoreceptor precursors elicit conventional and unusual light responses in mice with advanced retinal degeneration. Stem Cells 39:882−96

doi: 10.1002/stem.3365
[53]

Ribeiro J, Procyk CA, West EL, O'Hara-Wright M, Martins MF, et al. 2021. Restoration of visual function in advanced disease after transplantation of purified human pluripotent stem cell-derived cone photoreceptors. Cell Reports 35:109022

doi: 10.1016/j.celrep.2021.109022
[54]

Ripolles-Garcia A, Dolgova N, Phillips MJ, Savina S, Ludwig AL, et al. 2022. Systemic immunosuppression promotes survival and integration of subretinally implanted human ESC-derived photoreceptor precursors in dogs. Stem Cell Reports 17:1824−41

doi: 10.1016/j.stemcr.2022.06.009
[55]

Wang JS, Kefalov VJ. 2011. The cone-specific visual cycle. Progress in Retinal and Eye Research 30:115−28

doi: 10.1016/j.preteyeres.2010.11.001
[56]

Sonntag S, Dedek K, Dorgau B, Schultz K, Schmidt KF, et al. 2012. Ablation of retinal horizontal cells from adult mice leads to rod degeneration and remodeling in the outer retina. The Journal of Neuroscience 32:10713−24

doi: 10.1523/JNEUROSCI.0442-12.2012
[57]

Manafi N, Shokri F, Achberger K, Hirayama M, Mohammadi MH, et al. 2021. Organoids and organ chips in ophthalmology. The Ocular Surface 19:1−15

doi: 10.1016/j.jtos.2020.11.004
[58]

Yamasaki S, Sugita S, Horiuchi M, Masuda T, Fujii S, et al. 2021. Low immunogenicity and immunosuppressive properties of human ESC- and iPSC-derived retinas. Stem Cell Reports 16:851−67

doi: 10.1016/j.stemcr.2021.02.021
[59]

Tu HY, Watanabe T, Shirai H, Yamasaki S, Kinoshita M, et al. 2019. Medium- to long-term survival and functional examination of human iPSC-derived retinas in rat and primate models of retinal degeneration. EBioMedicine 39:562−74

doi: 10.1016/j.ebiom.2018.11.028
[60]

Watari K, Yamasaki S, Tu HY, Shikamura M, Kamei T, et al. 2023. Self-organization, quality control, and preclinical studies of human iPSC-derived retinal sheets for tissue-transplantation therapy. Communications Biology 6:164

doi: 10.1038/s42003-023-04543-5
[61]

Assawachananont J, Mandai M, Okamoto S, Yamada C, Eiraku M, et al. 2014. Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Reports 2:662−74

doi: 10.1016/j.stemcr.2014.03.011
[62]

Yamasaki S, Tu HY, Matsuyama T, Horiuchi M, Hashiguchi T, et al. 2022. A genetic modification that reduces ON-bipolar cells in hESC-derived retinas enhances functional integration after transplantation. iScience 25:103657

doi: 10.1016/j.isci.2021.103657
[63]

Matsuyama T, Tu HY, Sun J, Hashiguchi T, Akiba R, et al. 2021. Genetically engineered stem cell-derived retinal grafts for improved retinal reconstruction after transplantation. iScience 24:102866

doi: 10.1016/j.isci.2021.102866
[64]

Vielle A, Park YK, Secora C, Vergara MN. 2021. Organoids for the study of retinal development and developmental abnormalities. Frontiers in Cellular Neuroscience 15:667880

doi: 10.3389/fncel.2021.667880
[65]

Grigoryan EN. 2022. Self-organization of the retina during eye development, retinal regeneration in vivo, and in retinal 3D organoids in vitro. Biomedicines 10:1458

doi: 10.3390/biomedicines10061458
[66]

German OL, Vallese-Maurizi H, Soto TB, Rotstein NP, Politi LE. 2021. Retina stem cells, hopes and obstacles. World Journal of Stem Cells 13:1446−79

doi: 10.4252/wjsc.v13.i10.1446
[67]

MacLaren RE, Pearson RA. 2007. Stem cell therapy and the retina. Eye 21:1352−59

doi: 10.1038/sj.eye.6702842
[68]

Aramant R, Seiler M, Turner JE. 1988. Donor age influences on the success of retinal grafts to adult rat retina. Investigative Ophthalmology & Visual Science 29:498−503

[69]

Shirai H, Mandai M, Matsushita K, Kuwahara A, Yonemura S, et al. 2016. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proceedings of the National Academy of Sciences of the United States of America 113:E81−E90

doi: 10.1073/pnas.1512590113
[70]

Iraha S, Tu HY, Yamasaki S, Kagawa T, Goto M, et al. 2018. Establishment of immunodeficient retinal degeneration model mice and functional maturation of human ESC-derived retinal sheets after transplantation. Stem Cell Reports 10:1059−74

doi: 10.1016/j.stemcr.2018.01.032
[71]

Afanasyeva TAV, Corral-Serrano JC, Garanto A, Roepman R, Cheetham ME, et al. 2021. A look into retinal organoids: methods, analytical techniques, and applications. Cellular and Molecular Life Sciences 78:6505−32

doi: 10.1007/s00018-021-03917-4
[72]

Wang X, Wang T, Lam E, Alvarez D, Sun Y. 2023. Ocular Vascular Diseases: From Retinal Immune Privilege to Inflammation. International Journal of Molecular Sciences 24:12090

doi: 10.3390/ijms241512090
[73]

Singh R, Cuzzani O, Binette F, Sternberg H, West MD, et al. 2018. Pluripotent stem cells for retinal tissue engineering: current status and future prospects. Stem Cell Reviews and Reports 14:463−83

doi: 10.1007/s12015-018-9802-4
[74]

Singh RK, Nasonkin IO. 2020. Limitations and promise of retinal tissue from human pluripotent stem cells for developing therapies of blindness. Frontiers in Cellular Neuroscience 14:179

doi: 10.3389/fncel.2020.00179
[75]

West EL, Pearson RA, Barker SE, Luhmann UFO, Maclaren RE, et al. 2010. Long-term survival of photoreceptors transplanted into the adult murine neural retina requires immune modulation. Stem Cells 28:1997−2007

doi: 10.1002/stem.520
[76]

Singh RK, Occelli LM, Binette F, Petersen-Jones SM, Nasonkin IO. 2019. Transplantation of human embryonic stem cell-derived retinal tissue in the subretinal space of the cat eye. Stem Cells and Development 28:1151−66

doi: 10.1089/scd.2019.0090
[77]

Wenkel H, Streilein JW. 1998. Analysis of immune deviation elicited by antigens injected into the subretinal space. Investigative Ophthalmology & Visual Science 39:1823−34

[78]

Hughes EH, Schlichtenbrede FC, Murphy CC, Sarra GM, Luthert PJ, et al. 2003. Generation of activated sialoadhesin-positive microglia during retinal degeneration. Investigative Ophthalmology & Visual Science 44:2229−34

doi: 10.1167/iovs.02-0824
[79]

Ardeljan D, Wang Y, Park S, Shen D, Chu XK, et al. 2014. Interleukin-17 retinotoxicity is prevented by gene transfer of a soluble interleukin-17 receptor acting as a cytokine blocker: implications for age-related macular degeneration. PLoS One 9:e95900

doi: 10.1371/journal.pone.0095900
[80]

Tan W, Zou J, Yoshida S, Jiang B, Zhou Y. 2020. The role of inflammation in age-related macular degeneration. International Journal of Biological Sciences 16:2989−3001

doi: 10.7150/ijbs.49890
[81]

Ishida M, Masuda T, Sakai N, Nakai-Futatsugi Y, Kamao H, et al. 2024. Graft survival of major histocompatibility complex deficient stem cell-derived retinal cells. Communications Medicine 4:187

doi: 10.1038/s43856-024-00617-5
[82]

Hall BM, Dorsch S, Roser B. 1978. The cellular basis of allograft rejection in vivo. I. The cellular requirements for first-set rejection of heart grafts. The Journal of Experimental Medicine 148:878−89

doi: 10.1084/jem.148.4.878
[83]

Sims R, Lin B, Xue Y, Fouda R, McLelland BT, et al. 2025. Effect of immunosuppression on hESC-derived retina organoids in vitro and in vivo. Stem Cell Research & Therapy 16:165

doi: 10.1186/s13287-025-04271-z
[84]

Petrash CC, Palestine AG, Canto-Soler MV. 2021. Immunologic rejection of transplanted retinal pigmented epithelium: mechanisms and strategies for prevention. Frontiers in Immunology 12:621007

doi: 10.3389/fimmu.2021.621007
[85]

Díaz-Coránguez M, Lin CM, Liebner S, Antonetti DA. 2020. Norrin restores blood-retinal barrier properties after vascular endothelial growth factor-induced permeability. Journal of Biological Chemistry 295:4647−60

doi: 10.1074/jbc.RA119.011273
[86]

Xian B, Luo Z, Li K, Li K, Tang M, et al. 2019. Dexamethasone provides effective immunosuppression for improved survival of retinal organoids after epiretinal transplantation. Stem Cells International 2019:7148032

doi: 10.1155/2019/7148032
[87]

Lu D, Cai K, Zeng Z, Huang J, Ma N, et al. 2025. VEGF loading heparinized hyaluronic acid macroporous hydrogels for enhanced 3D endothelial cell migration and vascularization. Biomaterials Advances 167:214094

doi: 10.1016/j.bioadv.2024.214094
[88]

Petrus-Reurer S, Winblad N, Kumar P, Gorchs L, Chrobok M, et al. 2020. Generation of retinal pigment epithelial cells derived from human embryonic stem cells lacking human leukocyte antigen class I and II. Stem Cell Reports 14:648−62

doi: 10.1016/j.stemcr.2020.02.006
[89]

McGill TJ, Stoddard J, Renner LM, Messaoudi I, Bharti K, et al. 2018. Allogeneic iPSC-derived RPE cell graft failure following transplantation into the subretinal space in nonhuman primates. Investigative Ophthalmology & Visual Science 59:1374−83

doi: 10.1167/iovs.17-22467
[90]

Aboualizadeh E, Phillips MJ, McGregor JE, DiLoreto DA, Strazzeri JM, et al. 2020. Imaging transplanted photoreceptors in living nonhuman primates with single-cell resolution. Stem Cell Reports 15:482−97

doi: 10.1016/j.stemcr.2020.06.019
[91]

Galindo LT, Mundim MTVV, Pinto AS, Chiarantin GMD, Almeida MES, et al. 2018. Chondroitin sulfate impairs neural stem cell migration through ROCK activation. Molecular Neurobiology 55:3185−95

doi: 10.1007/s12035-017-0565-8
[92]

Gasparini SJ, Llonch S, Borsch O, Ader M. 2019. Transplantation of photoreceptors into the degenerative retina: current state and future perspectives. Progress in Retinal and Eye Research 69:1−37

doi: 10.1016/j.preteyeres.2018.11.001
[93]

Mahato B, Kaya KD, Fan Y, Sumien N, Shetty RA, et al. 2020. Pharmacologic fibroblast reprogramming into photoreceptors restores vision. Nature 581:83−88

doi: 10.1038/s41586-020-2201-4
[94]

Yao J, Tucker BA, Zhang X, Checa-Casalengua P, Herrero-Vanrell R, et al. 2011. Robust cell integration from co-transplantation of biodegradable MMP2-PLGA microspheres with retinal progenitor cells. Biomaterials 32:1041−50

doi: 10.1016/j.biomaterials.2010.09.063
[95]

Pearson RA, Barber AC, West EL, MacLaren RE, Duran Y, et al. 2010. Targeted disruption of outer limiting membrane junctional proteins (Crb1 and ZO-1) increases integration of transplanted photoreceptor precursors into the adult wild-type and degenerating retina. Cell Transplantation 19:487−503

doi: 10.3727/096368909X486057
[96]

Zou T, Gao L, Zeng Y, Li Q, Li Y, et al. 2019. Organoid-derived C-Kit+/SSEA4 human retinal progenitor cells promote a protective retinal microenvironment during transplantation in rodents. Nature Communications 10:1205

doi: 10.1038/s41467-019-08961-0
[97]

McUsic AC, Lamba DA, Reh TA. 2012. Guiding the morphogenesis of dissociated newborn mouse retinal cells and hES cell-derived retinal cells by soft lithography-patterned microchannel PLGA scaffolds. Biomaterials 33:1396−405

doi: 10.1016/j.biomaterials.2011.10.083
[98]

Soucy JR, Todd L, Kriukov E, Phay M, Malechka VV, et al. 2023. Controlling donor and newborn neuron migration and maturation in the eye through microenvironment engineering. Proceedings of the National Academy of Sciences of the United States of America 120:e2302089120

doi: 10.1073/pnas.2302089120
[99]

Santos-Ferreira T, Völkner M, Borsch O, Haas J, Cimalla P, et al. 2016. Stem cell-derived photoreceptor transplants differentially integrate into mouse models of cone-rod dystrophy. Investigative Ophthalmology & Visual Science 57:3509−20

doi: 10.1167/iovs.16-19087
[100]

Lee IK, Ludwig AL, Phillips MJ, Lee J, Xie R, et al. 2021. Ultrathin micromolded 3D scaffolds for high-density photoreceptor layer reconstruction. Science Advances 7:eabf0344

doi: 10.1126/sciadv.abf0344
[101]

Lin B, Singh RK, Seiler MJ, Nasonkin IO. 2024. Survival and functional integration of human embryonic stem cell-derived retinal organoids after shipping and transplantation into retinal degeneration rats. Stem Cells and Development 33:201−13

doi: 10.1089/scd.2023.0257
[102]

Parker RO, Crouch RK. 2010. Retinol dehydrogenases (RDHs) in the visual cycle. Experimental Eye Research 91:788−92

doi: 10.1016/j.exer.2010.08.013
[103]

Thomas BB, Lin B, Martinez-Camarillo JC, Zhu D, McLelland BT, et al. 2021. Co-grafts of human embryonic stem cell derived retina organoids and retinal pigment epithelium for retinal reconstruction in immunodeficient retinal degenerate royal college of surgeons rats. Frontiers in Neuroscience 15:752958

doi: 10.3389/fnins.2021.752958
[104]

Prusky GT, Alam NM, Beekman S, Douglas RM. 2004. Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Investigative Ophthalmology & Visual Science 45:4611−16

doi: 10.1167/iovs.04-0541
[105]

Mandai M, Fujii M, Hashiguchi T, Sunagawa GA, Ito SI, et al. 2017. iPSC-derived retina transplants improve vision in rd1 end-stage retinal-degeneration mice. Stem Cell Reports 8:69−83

doi: 10.1016/j.stemcr.2016.12.008
[106]

Sauvé Y, Lu B, Lund RD. 2004. The relationship between full field electroretinogram and perimetry-like visual thresholds in RCS rats during photoreceptor degeneration and rescue by cell transplants. Vision Research 44:9−18

doi: 10.1016/j.visres.2003.08.015
[107]

Lin B, McLelland BT, Aramant RB, Thomas BB, Nistor G, et al. 2020. Retina organoid transplants develop photoreceptors and improve visual function in RCS rats with RPE dysfunction. Investigative Ophthalmology & Visual Science 61:34

doi: 10.1167/iovs.61.11.34
[108]

He XY, Zhao CJ, Xu H, Chen K, Bian BSJ, et al. 2021. Synaptic repair and vision restoration in advanced degenerating eyes by transplantation of retinal progenitor cells. Stem Cell Reports 16:1805−17

doi: 10.1016/j.stemcr.2021.06.002
[109]

Gonzalez-Cordero A, West EL, Pearson RA, Duran Y, Carvalho LS, et al. 2013. Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nature Biotechnology 31:741−47

doi: 10.1038/nbt.2643
[110]

Small KW, Tran EM, Small L, Rao RC, Shaya F. 2019. Multimodal imaging and functional testing in a North Carolina macular disease family: toxoplasmosis, fovea plana, and torpedo maculopathy are phenocopies. Ophthalmology Retina 3:607−14

doi: 10.1016/j.oret.2019.03.002
[111]

Panorgias A, Zawadzki RJ, Capps AG, Hunter AA, Morse LS, et al. 2013. Multimodal assessment of microscopic morphology and retinal function in patients with geographic atrophy. Investigative Ophthalmology & Visual Science 54:4372−84

doi: 10.1167/iovs.12-11525
[112]

Wang X, Yang H, Zhu Z, Li H, Gu C, et al. 2022. Assembly and parallel implantation of a penetrating flexible probe with thousands of microelectrodes. 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS), 9−13 January 2022, Tokyo, Japan. USA: IEEE. pp. 400−3 doi: 10.1109/MEMS51670.2022.9699449

[113]

Hirami Y, Mandai M, Sugita S, Maeda A, Maeda T, et al. 2023. Safety and stable survival of stem-cell-derived retinal organoid for 2 years in patients with retinitis pigmentosa. Cell Stem Cell 30:1585−1596.e6

doi: 10.1016/j.stem.2023.11.004
[114]

Singh RK, Binette F, Seiler M, Petersen-Jones SM, Nasonkin IO. 2021. Pluripotent stem cell-based organoid technologies for developing next-generation vision restoration therapies of blindness. Journal of Ocular Pharmacology and Therapeutics 37:147−56

doi: 10.1089/jop.2020.0016
[115]

de Jongh D, Massey EK, Consortium V, Bunnik EM. 2022. Organoids: a systematic review of ethical issues. Stem Cell Research & Therapy 13:337

doi: 10.1186/s13287-022-02950-9
[116]

Zhu J, Reynolds J, Garcia T, Cifuentes H, Chew S, et al. 2018. Generation of transplantable retinal photoreceptors from a current good manufacturing practice-manufactured human induced pluripotent stem cell line. Stem Cells Translational Medicine 7:210−19

doi: 10.1002/sctm.17-0205
[117]

Zhao H, Yan F. 2024. Retinal organoids: a next-generation platform for high-throughput drug discovery. Stem Cell Reviews and Reports 20:495−508

doi: 10.1007/s12015-023-10661-8