[1]

State Council of China. 2021. Guiding Opinions on Green and Low-Carbon Circular Economy (No. 4) (in Chinese). www.gov.cn/zhengce/content/2021-02/22/content_5588274.htm?5xyFrom=site-NT (Retrieved 22 February, 2021)

[2]

KPMG. 2024. Statistical Review of World Energy. https://kpmg.com/cn/zh/home/insights/2024/08/statistical-review-of-world-energy-2024.html (Retrieved August 26, 2024)

[3]

KPMG. 2024. Energy Institute Statistical Review of World Energy. www.energyinst.org/statistical-review (Retrieved 26 August, 2024)

[4]

Xie W, Li J. 2023. Magnetic solid catalysts for sustainable and cleaner biodiesel production: a comprehensive review. Renewable and Sustainable Energy Reviews 171:113017

doi: 10.1016/j.rser.2022.113017
[5]

Rocha-Meneses L, Hari A, Inayat A, Yousef LA, Alarab S, et al. 2023. Recent advances on biodiesel production from waste cooking oil (WCO): a review of reactors, catalysts, and optimization techniques impacting the production. Fuel 348:128514

doi: 10.1016/j.fuel.2023.128514
[6]

Hasan MM, Rahman MM. 2017. Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: a review. Renewable and Sustainable Energy Reviews 74:938−48

doi: 10.1016/j.rser.2017.03.045
[7]

Westbrook CK, Naik CV, Herbinet O, Pitz WJ, Mehl M, et al. 2011. Detailed chemical kinetic reaction mechanisms for soy and rapeseed biodiesel fuels. Combustion and Flame 158(4):742−55

doi: 10.1016/j.combustflame.2010.10.020
[8]

Vranckx S, Beeckmann J, Kopp WA, Lee C, Cai L, et al. 2013. An experimental and kinetic modelling study of n-butyl formate combustion. Combustion and Flame 160(12):2680−92

doi: 10.1016/j.combustflame.2013.06.012
[9]

Zhang Y, Boehman AL. 2013. Oxidation behavior of soot generated from the combustion of methyl 2-butenoate in a co-flow diffusion flame. Combustion and Flame 160(1):112−19

doi: 10.1016/j.combustflame.2012.08.010
[10]

Chakravarthy K, Mcfarlane J, Daw S, Ra Y, Reitz R, et al. 2007. Physical properties of bio-diesel and implications for use of bio-diesel in diesel engines. SAE Transactions 116:885−95

[11]

Ra Y, Reitz R, McFarlane J, Daw S. 2008. Effects of fuel physical properties on diesel engine combustion using diesel and biodiesel fuels. SAE International Journal of Fuels and Lubricants 1:703−18

doi: 10.4271/2008-01-1379
[12]

Dooley S, Won SH, Chaos M, Heyne J, Ju Y, et al. 2010. A jet fuel surrogate formulated by real fuel properties. Combustion and Flame 157(12):2333−39

doi: 10.1016/j.combustflame.2010.07.001
[13]

Anand K, Ra Y, Reitz RD, Bunting B. 2011. Surrogate model development for fuels for advanced combustion engines. Energy & Fuels 25(4):1474−84

doi: 10.1021/ef101719a
[14]

Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M. 2012. Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews 16(1):143−69

doi: 10.1016/j.rser.2011.07.143
[15]

HadjAli K, Crochet M, Vanhove G, Ribaucour M, Minetti R. 2009. A study of the low temperature autoignition of methyl esters. Proceedings of the Combustion Institute 32(1):239−46

doi: 10.1016/j.proci.2008.09.002
[16]

Dayma G, Sarathy SM, Togbé C, Yeung C, Thomson MJ, et al. 2011. Experimental and kinetic modeling of methyl octanoate oxidation in an opposed-flow diffusion flame and a jet-stirred reactor. Proceedings of the Combustion Institute 33(1):1037−43

doi: 10.1016/j.proci.2010.05.024
[17]

Dayma G, Togbé C, Dagaut P. 2009. Detailed kinetic mechanism for the oxidation of vegetable oil methyl esters: new evidence from methyl heptanoate. Energy & Fuels 23(9):4254−68

doi: 10.1021/ef900184y
[18]

Fisher EM, Pitz WJ, Curran HJ, Westbrook CK. 2000. Detailed chemical kinetic mechanisms for combustion of oxygenated fuels. Proceedings of the Combustion Institute 28(2):1579−86

doi: 10.1016/S0082-0784(00)80555-X
[19]

Gaïl S, Thomson MJ, Sarathy SM, Syed SA, Dagaut P, et al. 2007. A wide-ranging kinetic modeling study of methyl butanoate combustion. Proceedings of the Combustion Institute 31(1):305−11

doi: 10.1016/j.proci.2006.08.051
[20]

Szybist JP, Song J, Alam M, Boehman AL. 2007. Biodiesel combustion, emissions and emission control. Fuel Processing Technology 88(7):679−91

doi: 10.1016/j.fuproc.2006.12.008
[21]

Szybist JP, Boehman AL, Haworth DC, Koga H. 2007. Premixed ignition behavior of alternative diesel fuel-relevant compounds in a motored engine experiment. Combustion and Flame 149(1):112−28

doi: 10.1016/j.combustflame.2006.12.011
[22]

Herbinet O, Pitz WJ, Westbrook CK. 2008. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate. Combustion and Flame 154(3):507−28

doi: 10.1016/j.combustflame.2008.03.003
[23]

Dagaut P, Gaı¨l S, Sahasrabudhe M. 2007. Rapeseed oil methyl ester oxidation over extended ranges of pressure, temperature, and equivalence ratio: Experimental and modeling kinetic study. Proceedings of the Combustion Institute 31(2):2955−61

doi: 10.1016/j.proci.2006.07.142
[24]

Yang CJ, Tao YJ, Zhang HY. 2024. Binary diffusion coefficient of methyl decanoate and its impact on non-premixed flame extinction: A molecular dynamics study. Combustion and Flame 262:113340

doi: 10.1016/j.combustflame.2024.113340
[25]

Zhao M, Tao Y, Xiao R, Zhang H. 2023. A HyChem combustion model of methyl decanoate. Combustion and Flame 251:112677

doi: 10.1016/j.combustflame.2023.112677
[26]

Hotard C, Tekawade A, Oehlschlaeger MA. 2018. Constant volume spray ignition of C9-C10 biodiesel surrogates: Methyl decanoate, ethyl nonanoate, and methyl decenoates. Fuel 224:219−25

doi: 10.1016/j.fuel.2018.03.007
[27]

Talukder N, Lee KY. 2018. Laminar flame speeds and Markstein lengths of methyl decanoate-air premixed flames at elevated pressures and temperatures. Fuel 234:1346−53

doi: 10.1016/j.fuel.2018.08.017
[28]

Zhai Y, Ao C, Feng B, Meng Q, Zhang Y, et al. 2018. Experimental and kinetic modeling investigation on methyl decanoate pyrolysis at low and atmospheric pressures. Fuel 232:333−40

doi: 10.1016/j.fuel.2018.05.145
[29]

Herbinet O, Glaude PA, Warth V, Battin-Leclerc F. 2011. Experimental and modeling study of the thermal decomposition of methyl decanoate. Combustion and Flame 158(7):1288−300

doi: 10.1016/j.combustflame.2010.11.009
[30]

Gerasimov IE, Knyazkov DA, Dmitriev AM, Kuibida LV, Shmakov AG, et al. 2015. Experimental and numerical study of the structure of a premixed methyl decanoate/oxygen/argon glame. Combustion, Explosion, and Shock Waves 51(3):285−92

doi: 10.1134/S0010508215030016
[31]

Meng Z, Liang K, Fang J. 2019. Laminar burning velocities of iso-octane, toluene, 1-hexene, ethanol and their quaternary blends at elevated temperatures and pressures. Fuel 237:630−36

doi: 10.1016/j.fuel.2018.10.072
[32]

Raida MB, Hoetmer GJ, Konnov AA, van Oijen JA, de Goey LPH. 2021. Laminar burning velocity measurements of ethanol+air and methanol+air flames at atmospheric and elevated pressures using a new Heat Flux setup. Combustion and Flame 230:111435

doi: 10.1016/j.combustflame.2021.111435
[33]

Liu L, Han X, Wang C, Zhang S, Feng H. 2024. Experimental and numerical study of laminar burning velocity for Diisobutylene+ PRF/TRF mixtures. Journal of the Energy Institute 117:101802

doi: 10.1016/j.joei.2024.101802
[34]

Al-Khafaji M, Yang JF, Tomlin AS, Thompson HM, de Boer G, et al. 2023. Laminar burning velocities and Markstein numbers for pure hydrogen and methane/hydrogen/air mixtures at elevated pressures. Fuel 354:129331

doi: 10.1016/j.fuel.2023.129331
[35]

Oppong F, Liu Y, Li X, Xu C, Li Y. 2024. The laminar burning velocity of propyl acetate at high pressures and temperatures. Fuel 375:132600

doi: 10.1016/j.fuel.2024.132600
[36]

Fagundez JLS, Sari RL, Garcia A, Pereira FM, Martins MES, et al. 2020. A chemical kinetics based investigation on laminar burning velocity and knock occurrence in a spark-ignition engine fueled with ethanol–water blends. Fuel 280:118587

doi: 10.1016/j.fuel.2020.118587
[37]

Vancoillie J, Demuynck J, Galle J, Verhelst S, van Oijen JA. 2012. A laminar burning velocity and flame thickness correlation for ethanol–air mixtures valid at spark-ignition engine conditions. Fuel 102:460−69

doi: 10.1016/j.fuel.2012.05.022
[38]

ALICAT. 2024. Mc-Gas-Mass-Flow-Controllers. www.alicat.com.cn/models/mc-gas-mass-flow-controllers (Retrieved August 26, 2024)

[39]

Bronkhorst. 2024. Low Flow Coriolis Mass Flow Controller. www.bronkhorst.com/int/products/liquid-flow/mini-cori-flow/m13v14i (Retrieved August 26, 2024)

[40]

Alekseev VA, Naucler JD, Christensen M, Nilsson EJK, Volkov EN, et al. 2016. Experimental uncertainties of the heat flux method for measuring burning velocities. Combustion Science and Technology 188(6):853−94

doi: 10.1080/00102202.2015.1125348
[41]

Van Maaren A, de Goey LPH. 1994. Laser doppler thermometry in flat flames. Combustion Science and Technology 99(1−3):105−18

doi: 10.1080/00102209408935427
[42]

Bosschaart KJ, de Goey LPH. 2003. Detailed analysis of the heat flux method for measuring burning velocities. Combustion and Flame 132(1):170−80

doi: 10.1016/S0010-2180(02)00433-9
[43]

Li B, Lindén J, Li ZS, Konnov AA, Aldén M, et al. 2011. Accurate measurements of laminar burning velocity using the Heat Flux method and thermographic phosphor technique. Proceedings of the Combustion Institute 33(1):939−46

doi: 10.1016/j.proci.2010.06.111
[44]

van Treek L, Roth N, Seidel L, Mauss F. 2020. Measurements of the laminar burning velocities of rich ethylene/air mixtures. Fuel 275:117938

doi: 10.1016/j.fuel.2020.117938
[45]

Grana R, Frassoldati A, Saggese C, Faravelli T, Ranzi E. 2012. A wide range kinetic modeling study of pyrolysis and oxidation of methyl butanoate and methyl decanoate – Note II: Lumped kinetic model of decomposition and combustion of methyl esters up to methyl decanoate. Combustion and Flame 159(7):2280−94

doi: 10.1016/j.combustflame.2012.02.027
[46]

Al-Gharibeh E, Kumar K. 2022. Oxidation kinetics of methyl decanoate in a motored engine. Fuel 308:121912

doi: 10.1016/j.fuel.2021.121912
[47]

Diévart P, Won SH, Dooley S, Dryer FL, Ju Y. 2012. A kinetic model for methyl decanoate combustion. Combustion and Flame 159(5):1793−805

doi: 10.1016/j.combustflame.2012.01.002
[48]

Glaude PA, Herbinet O, Bax S, Biet J, Warth V, et al. 2010. Modeling of the oxidation of methyl esters—validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor. Combustion and Flame 157(11):2035−50

doi: 10.1016/j.combustflame.2010.03.012
[49]

Sarathy SM, Thomson MJ, Pitz WJ, Lu T. 2011. An experimental and kinetic modeling study of methyl decanoate combustion. Proceedings of the Combustion Institute 33(1):399−405

doi: 10.1016/j.proci.2010.06.058
[50]

Seshadri K, Lu T, Herbinet O, Humer S, Niemann U, et al. 2009. Experimental and kinetic modeling study of extinction and ignition of methyl decanoate in laminar non-premixed flows. Proceedings of the Combustion Institute 32(1):1067−74

doi: 10.1016/j.proci.2008.06.215
[51]

Luo Z, Lu T, Maciaszek MJ, Som S, Longman DE. 2010. A reduced mechanism for high-temperature oxidation of biodiesel surrogates. Energy & Fuels 24(12):6283−93

doi: 10.1021/ef1012227
[52]

Fu J, Tang C, Jin W, Huang Z. 2014. Effect of preferential diffusion and flame stretch on flame structure and laminar burning velocity of syngas Bunsen flame using OH-PLIF. International Journal of Hydrogen Energy 39(23):12187−93

doi: 10.1016/j.ijhydene.2014.06.043
[53]

Hu X, Chen J, Lin Q, Konnov AA. 2024. Experimental and kinetic modeling study of the laminar burning velocity of CH4/H2 mixtures under oxy-fuel conditions. Fuel 376:132597

doi: 10.1016/j.fuel.2024.132597
[54]

Wang J, Su S, Song Y, Jia M, Liu Y, et al. 2024. Experimental and reaction mechanism study on laminar burning velocity and characteristics of OH/NH generation in ammonia co-combustion. International Journal of Hydrogen Energy 91:127−36

doi: 10.1016/j.ijhydene.2024.10.140