[1]

Perumal AB, Nambiar RB, Moses JA, Anandharamakrishnan C. 2022. Nanocellulose: Recent trends and applications in the food industry. Food Hydrocolloids 127:107484

doi: 10.1016/j.foodhyd.2022.107484
[2]

Kassie BB, Daget TM, Tassew DF. 2024. Synthesis, functionalization, and commercial application of cellulose-based nanomaterials. International Journal of Biological Macromolecules 278:134990

doi: 10.1016/j.ijbiomac.2024.134990
[3]

Soares da Silva FAG, Matos M, Dourado F, Reis MAM, Branco PC, et al. 2023. Development of a layered bacterial nanocellulose-PHBV composite for food packaging. Journal of the Science of Food and Agriculture 103:1077−87

doi: 10.1002/jsfa.11839
[4]

Li J, Zhang F, Zhong Y, Zhao Y, Gao P, et al. 2022. Emerging food packaging applications of cellulose nanocomposites: a review. Polymers 14:4025

doi: 10.3390/polym14194025
[5]

Wang M, Yuan J, Huang X, Cai X, Li L, et al. 2013. Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility. Colloids and Surfaces B: Biointerfaces 103:52−58

doi: 10.1016/j.colsurfb.2012.10.025
[6]

Pennells J, Godwin ID, Amiralian N, Martin DJ. 2020. Trends in the production of cellulose nanofibers from non-wood sources. Cellulose 27:575−93

doi: 10.1007/s10570-019-02828-9
[7]

Liu YH, Xu Y, He YT, Wen JL, Yuan TQ. 2024. Lignocellulosic biomass-derived functional nanocellulose for food-related applications: a review. International Journal of Biological Macromolecules 277:134536

doi: 10.1016/j.ijbiomac.2024.134536
[8]

Kumar GG, Pratyoosh S. 2020. Lignocellulosic biomass for the synthesis of nanocellulose and its eco-friendly advanced applications . Frontiers in Chemistry 8:601256

doi: 10.3389/fchem.2020.601256
[9]

Khan MR, Wasim M, Farooq A, Naeem MA, Mushtaq M, et al. 2024. A review study on derivation of nanocellulose to its functional properties and applications in drug delivery system, food packaging, and biosensing devices. Polymer Bulletin 81:9519−68

doi: 10.1007/s00289-024-05190-4
[10]

Nadeem H, Athar M, Dehghani M, Garnier G, Batchelor W. 2022. Recent advancements, trends, fundamental challenges and opportunities in spray deposited cellulose nanofibril films for packaging applications. Science of the Total Environment 836:155654

doi: 10.1016/j.scitotenv.2022.155654
[11]

Yi T, Zhao H, Mo Q, Pan D, Liu Y, et al. 2020. From cellulose to cellulose nanofibrils—a comprehensive review of the preparation and modification of cellulose nanofibrils. Materials 13:5062

doi: 10.3390/ma13225062
[12]

Rol F, Belgacem MN, Gandini A, Bras J. 2019. Recent advances in surface-modified cellulose nanofibrils. Progress in Polymer Science 88:241−64

doi: 10.1016/j.progpolymsci.2018.09.002
[13]

Alemdar A, Sain M. 2008. Isolation and characterization of nanofibers from agricultural residues – wheat straw and soy hulls. Bioresource Technology 99:1664−71

doi: 10.1016/j.biortech.2007.04.029
[14]

Farooq A, Patoary MK, Zhang M, Mussana H, Li M, et al. 2020. Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials. International Journal of Biological Macromolecules 154:1050−73

doi: 10.1016/j.ijbiomac.2020.03.163
[15]

Kabir MM, Wang H, Lau KT, Cardona F. 2012. Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Composites Part B: Engineering 43:2883−92

doi: 10.1016/j.compositesb.2012.04.053
[16]

Saini S, Quinot D, Lavoine N, Belgacem MN, Bras J. 2017. β-Cyclodextrin-grafted TEMPO-oxidized cellulose nanofibers for sustained release of essential oil. Journal of Materials Science 52:3849−61

doi: 10.1007/s10853-016-0644-7
[17]

Tang Z, Lin X, Yu M, Mondal AK, Wu H. 2024. Recent advances in TEMPO-oxidized cellulose nanofibers: Oxidation mechanism, characterization, properties and applications. International Journal of Biological Macromolecules 259:129081

doi: 10.1016/j.ijbiomac.2023.129081
[18]

Löbmann K, Svagan AJ. 2017. Cellulose nanofibers as excipient for the delivery of poorly soluble drugs. International Journal of Pharmaceutics 533:285−97

doi: 10.1016/j.ijpharm.2017.09.064
[19]

Heinze T, El Seoud OA, Koschella A. 2018. Etherification of cellulose. In Cellulose Derivatives: Synthesis, Structure, and Properties, eds. Heinze T, El Seoud OA, Koschella A. Cham: Springer. pp. 429−77 doi: 10.1007/978-3-319-73168-1_6

[20]

Zahra A, Gao S, Park JM, Shin SJ. 2022. Impact of carboxymethylation pretreatment on the rheology of cellulose nanofiber from bleached rice hull. Journal of Korea TAPPI 54:63−72

doi: 10.7584/JKTAPPI.2022.06.54.3.63
[21]

Zhang K, Tian X, Shen R, Zhao K, Wang Y, et al. 2023. Delaying In vitro gastric digestion of myofibrillar protein gel using carboxymethylated cellulose nanofibrils: forming a compact and uniform microstructure. Food Hydrocolloids 140:108661

doi: 10.1016/j.foodhyd.2023.108661
[22]

Im W, Lee S, Rajabi Abhari A, Youn HJ, Lee HL. 2018. Optimization of carboxymethylation reaction as a pretreatment for production of cellulose nanofibrils. Cellulose 25:3873−83

doi: 10.1007/s10570-018-1853-9
[23]

Zhang K, Zhang Y, Yan D, Zhang C, Nie S. 2018. Enzyme-assisted mechanical production of cellulose nanofibrils: thermal stability. Cellulose 25:5049−61

doi: 10.1007/s10570-018-1928-7
[24]

Rocha PdS, Pagno CH, Crizel TdM, Flôres SH, Hertz PF. 2024. Olive pomace upcycling: eco-friendly production of cellulose nanofibers by enzymatic hydrolysis and application in starch films. Journal of Food Science 89:9456−65

doi: 10.1111/1750-3841.17454
[25]

Tao P, Wu Z, Xing C, Zhang Q, Wei Z, et al. 2019. Effect of enzymatic treatment on the thermal stability of cellulose nanofibrils. Cellulose 26:7717−25

doi: 10.1007/s10570-019-02634-3
[26]

Yang H, Bai L, Duan Y, Xie H, Wang X, et al. 2023. Upcycling corn straw into nanocelluloses via enzyme-assisted homogenization: Application as building blocks for high-performance films. Journal of Cleaner Production 390:136215

doi: 10.1016/j.jclepro.2023.136215
[27]

Nie S, Zhang K, Lin X, Zhang C, Yan D, et al. 2018. Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils. Carbohydrate Polymers 181:1136−42

doi: 10.1016/j.carbpol.2017.11.020
[28]

Las-Casas B, Arantes V. 2023. Endoglucanase pretreatment aids in isolating tailored-cellulose nanofibrils combining energy saving and high-performance packaging. International Journal of Biological Macromolecules 242:125057

doi: 10.1016/j.ijbiomac.2023.125057
[29]

Wahlström RM, Suurnäkki A. 2015. Enzymatic hydrolysis of lignocellulosic polysaccharides in the presence of ionic liquids. Green Chemistry 17:694−714

doi: 10.1039/C4GC01649A
[30]

Onkarappa HS, Prakash GK, Pujar GH, Rajith Kumar CR, Latha MS, et al. 2020. Hevea brasiliensis mediated synthesis of nanocellulose: effect of preparation methods on morphology and properties. International Journal of Biological Macromolecules 160:1021−28

doi: 10.1016/j.ijbiomac.2020.05.188
[31]

Sui Y, Cui Y, Wang Y, Zhao Y, Sun G. 2022. An efficient strategy for enhancing glucose recovery of wheat straw by ionic liquid combined ball milling pretreatment. Bioenergy Research 15:1933−45

doi: 10.1007/s12155-022-10404-6
[32]

Sankhla S, Sardar HH, Neogi S. 2021. Greener extraction of highly crystalline and thermally stable cellulose micro-fibers from sugarcane bagasse for cellulose nano-fibrils preparation. Carbohydrate Polymers 251:117030

doi: 10.1016/j.carbpol.2020.117030
[33]

Vitz J, Erdmenger T, Haensch C, Schubert US. 2009. Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chemistry 11:417−24

doi: 10.1039/b818061j
[34]

Peng X, Zhu D, Liu J, Wei L, Liu N, et al. 2023. Response surface optimization of ionic liquid pretreatments for maximizing cellulose nanofibril production. RSC Advances 13:35629−38

doi: 10.1039/D3RA06930C
[35]

Abdel-Hakim A, Mourad R. 2023. Nanocellulose and its polymer composites: preparation, characterization, and applications. Russian Chemical Reviews 92:RCR5076

doi: 10.57634/rcr5076
[36]

Djafari Petroudy SR, Chabot B, Loranger E, Naebe M, Shojaeiarani J, et al. 2021. Recent advances in cellulose nanofibers preparation through energy-efficient approaches: a review. Energies 14:6792

doi: 10.3390/en14206792
[37]

Nakagaito AN, Yano H. 2004. The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Applied Physics A 78:547−52

doi: 10.1007/s00339-003-2453-5
[38]

Balasubramaniam VM, Martínez-Monteagudo SI, Gupta R. 2015. Principles and application of high pressure-based technologies in the food industry. Annual Review of Food Science and Technology 6:435−62

doi: 10.1146/annurev-food-022814-015539
[39]

Teo HL, Wahab RA. 2020. Towards an eco-friendly deconstruction of agro-industrial biomass and preparation of renewable cellulose nanomaterials: a review. International Journal of Biological Macromolecules 161:1414−30

doi: 10.1016/j.ijbiomac.2020.08.076
[40]

Abdul Khalil HPS, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, et al. 2014. Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydrate Polymers 99:649−65

doi: 10.1016/j.carbpol.2013.08.069
[41]

Ling S, Chen W, Fan Y, Zheng K, Jin K, et al. 2018. Biopolymer nanofibrils: Structure, modeling, preparation, and applications. Progress in Polymer Science 85:1−56

doi: 10.1016/j.progpolymsci.2018.06.004
[42]

Phanthong P, Reubroycharoen P, Hao X, Xu G, Abudula A, et al. 2018. Nanocellulose: extraction and application. Carbon Resources Conversion 1:32−43

doi: 10.1016/j.crcon.2018.05.004
[43]

Barakat A, Mayer-Laigle C, Solhy A, Arancon RAD, de Vries H, et al. 2014. Mechanical pretreatments of lignocellulosic biomass: towards facile and environmentally sound technologies for biofuels production. RSC Advances 4:48109−27

doi: 10.1039/C4RA07568D
[44]

Wu Y, Chen X, Zhang Q, Ding Y, Zhou X. 2021. Stability mechanism of Pickering emulsion and its application in food industry: a review. Food Science 42:275−82

doi: 10.7506/spkx1002-6630-20200325-373
[45]

Gao J, Qiu Y, Chen F, Zhang L, Wei W, et al. 2023. Pomelo peel derived nanocellulose as Pickering stabilizers: Fabrication of Pickering emulsions and their potential as sustained-release delivery systems for lycopene. Food Chemistry 415:135742

doi: 10.1016/j.foodchem.2023.135742
[46]

Lu Y, Qian X, Xie W, Zhang W, Huang J, et al. 2019. Rheology of the sesame oil-in-water emulsions stabilized by cellulose nanofibers. Food Hydrocolloids 94:114−27

doi: 10.1016/j.foodhyd.2019.03.001
[47]

Lv JY, Wang H, Zhu MQ, Chen Q, Huan SQ, et al. 2024. High internal phase Pickering emulsions via complexation of cellulose nanofibrils and nanochitin: enhanced interfacial adsorption and structured aqueous network. Food Hydrocolloids 157:110383

doi: 10.1016/j.foodhyd.2024.110383
[48]

Zhang W, Zhang Y, Cao J, Jiang W. 2021. Improving the performance of edible food packaging films by using nanocellulose as an additive. International Journal of Biological Macromolecules 166:288−96

doi: 10.1016/j.ijbiomac.2020.10.185
[49]

Hassan B, Chatha SAS, Hussain AI, Zia KM, Akhtar N. 2018. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules 109:1095−107

doi: 10.1016/j.ijbiomac.2017.11.097
[50]

González A, Gastelú G, Barrera GN, Ribotta PD, Álvarez Igarzabal CI. 2019. Preparation and characterization of soy protein films reinforced with cellulose nanofibers obtained from soybean by-products. Food Hydrocolloids 89:758−64

doi: 10.1016/j.foodhyd.2018.11.051
[51]

Niu X, Liu Y, Song Y, Han J, Pan H. 2018. Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid /chitosan composite film for food packaging. Carbohydrate Polymers 183:102−9

doi: 10.1016/j.carbpol.2017.11.079
[52]

Ghadiri Alamdari N, Salmasi S, Almasi H. 2021. Tomato seed mucilage as a new source of biodegradable film-forming material: effect of glycerol and cellulose nanofibers on the characteristics of resultant films. Food and Bioprocess Technology 14:2380−400

doi: 10.1007/s11947-021-02734-8
[53]

Riahi Z, Ezati P, Rhim JW, Bagheri R, Pircheraghi G. 2022. Cellulose nanofiber-based ethylene scavenging antimicrobial films incorporated with various types of titanium dioxide nanoparticles to extend the shelf life of fruits. ACS Applied Polymer Materials 4(7):4765−73

doi: 10.1021/acsapm.2c00338
[54]

Li Z, Guan J, Yan C, Chen N, Wang C, et al. 2023. Corn straw core/cellulose nanofibers composite for food packaging: improved mechanical, bacteria blocking, ultraviolet and water vapor barrier properties. Food Hydrocolloids 143:108884

doi: 10.1016/j.foodhyd.2023.108884
[55]

Kim YH, Kim HJ, Yoon KS, Rhim JW. 2023. Cellulose nanofiber/deacetylated quaternary chitosan composite packaging film for growth inhibition of Listeria monocytogenes in raw salmon. Food Packaging and Shelf Life 35:101040

doi: 10.1016/j.fpsl.2023.101040
[56]

Wagh RV, Khan A, Priyadarshi R, Ezati P, Rhim JW. 2023. Cellulose nanofiber-based multifunctional films integrated with carbon dots and anthocyanins from Brassica oleracea for active and intelligent food packaging applications. International Journal of Biological Macromolecules 233:123567

doi: 10.1016/j.ijbiomac.2023.123567
[57]

Jang JH, Kang HJ, Adedeji OE, Kim GY, Lee JK, et al. 2023. Development of a pH indicator for monitoring the freshness of minced pork using a cellulose nanofiber. Food Chemistry 403:134366

doi: 10.1016/j.foodchem.2022.134366
[58]

Zhou W, Wu Z, Xie F, Tang S, Fang J, et al. 2021. 3D printed nanocellulose-based label for fruit freshness keeping and visual monitoring. Carbohydrate Polymers 273:118545

doi: 10.1016/j.carbpol.2021.118545
[59]

Yu W, Luo L, Yi Y, Xing C, Yang Y, et al. 2024. Active food packaging composite films from bast fibers-derived cellulose nanofibrils. ACS Sustainable Chemistry & Engineering 12:9511−21

doi: 10.1021/acssuschemeng.4c03117
[60]

Amoroso L, De France KJ, Milz CI, Siqueira G, Zimmermann T, et al. 2022. Sustainable cellulose nanofiber films from carrot pomace as sprayable coatings for food packaging applications. ACS Sustainable Chemistry & Engineering 10:342−52

doi: 10.1021/acssuschemeng.1c06345
[61]

Ghosh T, Nakano K, Katiyar V. 2021. Curcumin doped functionalized cellulose nanofibers based edible chitosan coating on kiwifruits. International Journal of Biological Macromolecules 184:936−45

doi: 10.1016/j.ijbiomac.2021.06.098
[62]

Chen T, He X, Jiang T, Liu W, Li Y, et al. 2021. Synthesis and drug delivery properties of Ibuprofen-Cellulose nanofibril system. International Journal of Biological Macromolecules 182:931−37

doi: 10.1016/j.ijbiomac.2021.04.096
[63]

Putra BU, Hardiningtyas SD, Hastuti N, Ramadhan W, Uju, et al. 2024. Alginate hydrogel incorporating cellulose nanofiber from solid waste agar industry for hydrophobic antibiotic delivery: synthesis and characterization. Materials Today Communications 38:108248

doi: 10.1016/j.mtcomm.2024.108248
[64]

Wang L, Zhu H, Xu G, Hou X, He H, et al. 2020. A biocompatible cellulose-nanofiber-based multifunctional material for Fe3+ detection and drug delivery. Journal of Materials Chemistry C 8:11796−804

doi: 10.1039/D0TC02604B
[65]

Chang Y, Wang Q, Huang J, Luo X, Huang Y, et al. 2023. Curcumin-loaded bamboo shoot cellulose nanofibers: characterization and in vitro studies. Foods 12:3512

doi: 10.3390/foods12183512
[66]

Li Y, Yao S, Chen Y, Wu L, Xiang D, et al. 2024. Synthesis and characterization of zinc ion-integrated quercetin delivery system using areca nut seeds nanocellulose. LWT 192:115673

doi: 10.1016/j.lwt.2023.115673
[67]

Luan Q, Zhou WJ, Zhang H, Bao YP, Zheng MM, et al. 2018. Cellulose-based composite macrogels from cellulose fiber and cellulose nanofiber as intestine delivery vehicles for probiotics. Journal of Agricultural and Food Chemistry 66:339−45

doi: 10.1021/acs.jafc.7b04754
[68]

Lian W, Huang Y, Li Y, Wang X, Qu M, et al. 2023. Advances in research on the effects of dietary fiber on protein gel properties. Food Science 44:340−48

doi: 10.7506/spkx1002-6630-20220509-104
[69]

Tolve R, Zanoni M, Ferrentino G, Gonzalez-Ortega R, Sportiello L, et al. 2024. Dietary fibers effects on physical, thermal, and sensory properties of low-fat ice cream. LWT 199:116094

doi: 10.1016/j.lwt.2024.116094
[70]

Younis K, Yousuf O, Qadri OS, Jahan K, Osama K, et al. 2022. Incorporation of soluble dietary fiber in comminuted meat products: Special emphasis on changes in textural properties. Bioactive Carbohydrates and Dietary Fibre 27:100288

doi: 10.1016/j.bcdf.2021.100288
[71]

Zhao H, Wang L, Brennan M, Brennan C. 2022. How does the addition of mushrooms and their dietary fibre affect starchy foods. Journal of Future Foods 2:18−24

doi: 10.1016/j.jfutfo.2022.03.013
[72]

Lu Z, Zhang H, Toivakka M, Xu C. 2024. Current progress in functionalization of cellulose nanofibers (CNFs) for active food packaging. International Journal of Biological Macromolecules 267:131490

doi: 10.1016/j.ijbiomac.2024.131490
[73]

Azeredo HMC, Tonon RV, McClements DJ. 2021. Designing healthier foods: reducing the content or digestibility of key nutrients. Trends in Food Science & Technology 118:459−70

doi: 10.1016/j.jpgs.2021.10.023
[74]

Elleuch M, Bedigian D, Roiseux O, Besbes S, Blecker C, et al. 2011. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: a review. Food Chemistry 124:411−21

doi: 10.1016/j.foodchem.2010.06.077
[75]

Velásquez-Cock J, Serpa A, Vélez L, Gañán P, Gómez Hoyos C, et al. 2019. Influence of cellulose nanofibrils on the structural elements of ice cream. Food Hydrocolloids 87:204−13

doi: 10.1016/j.foodhyd.2018.07.035
[76]

Hongho C, Chiewchan N, Devahastin S. 2023. Production of salad dressings via the use of economically prepared cellulose nanofiber from lime residue as a functional ingredient. Journal of Food Science 88:1101−13

doi: 10.1111/1750-3841.16478
[77]

Zhang Y, Deng W, Wu M, Rahmaninia M, Xu C, et al. 2023. Tailoring functionality of nanocellulose: current status and critical challenges. Nanomaterials 13:1489

doi: 10.3390/nano13091489
[78]

Mishra RK, Ha SK, Verma K, Tiwari SK. 2018. Recent progress in some selected bio-nanomaterials and their engineering applications: an overview. Journal of Science: Advanced Materials and Devices 3:263−88

doi: 10.1016/j.jsamd.2018.05.003
[79]

Song Y, Chen W, Niu X, Fang G, Min H, et al. 2019. An energy efficient one-pot swelling/esterification method to prepare cellulose nanofiber with uniform diameter. ChemSusChem 11(21):3714−18

doi: 10.1002/cssc.201801794
[80]

Haroni S, Zaki Dizaji H, Bahrami H, González Alriols M. 2021. Sustainable production of cellulose nanofiber from sugarcane trash: a quality and life cycle assessment. Industrial Crops & Products 173:114084

doi: 10.1016/j.indcrop.2021.114084
[81]

Pradhan D, Jaiswal S, Tiwari BK, Jaiswal AK. 2024. Choline chloride – oxalic acid dihydrate deep eutectic solvent pretreatment of Barley straw for production of cellulose nanofibers. International Journal of Biological Macromolecules 281:136213

doi: 10.1016/j.ijbiomac.2024.136213
[82]

Pinto LO, Bernardes JS, Rezende CA. 2019. Low-energy preparation of cellulose nanofibers from sugarcane bagasse by modulating the surface charge density. Carbohydrate Polymers 218:145−53

doi: 10.1016/j.carbpol.2019.04.070
[83]

Du H, Liu C, Zhang M, Kong Q, Li B, et al. 2018. Preparation and industrialization status of nanocellulose. Progress in Chemistry 30:448−62

doi: 10.7536/PC170830
[84]

Kekäläinen K, Liimatainen H, Niinimäki J. 2014. Disintegration of periodate–chlorite oxidized hardwood pulp fibres to cellulose microfibrils: kinetics and charge threshold. Cellulose 21:3691−700

doi: 10.1007/s10570-014-0363-7
[85]

Liimatainen H, Visanko M, Sirviö JA, Hormi OEO, Niinimaki J. 2012. Enhancement of the nanofibrillation of wood cellulose through sequential periodate–chlorite oxidation. Biomacromolecules 13:1592−97

doi: 10.1021/bm300319m
[86]

Luo X, Wang Q, Liu W, Wu Y, Yang J, et al. 2024. Characterization and safety assessment of bamboo shoot shell cellulose nanofiber: prepared by acidolysis combined with dynamic high-pressure microfluidization. Carbohydrate Polymers 335:122082

doi: 10.1016/j.carbpol.2024.122082
[87]

Cañas-Gutiérrez A, Gómez Hoyos C, Velásquez-Cock J, Gañán P, Triana O, et al. 2024. Health and toxicological effects of nanocellulose when used as a food ingredient: a review. Carbohydrate Polymers 323:121382

doi: 10.1016/j.carbpol.2023.121382
[88]

Stoudmann N, Schmutz M, Hirsch C, Nowack B, Som C. 2020. Human hazard potential of nanocellulose: quantitative insights from the literature. Nanotoxicology 14:1241−57

doi: 10.1080/17435390.2020.1814440
[89]

Morais JPS, de Freitas Rosa M, de Brito ES, de Azeredo HMC, de Figueirêdo MCB. 2023. Sustainable pickering emulsions with nanocellulose: innovations and challenges. Foods 12:3599

doi: 10.3390/foods12193599