[1]

Zhang F, Li W, Gao C, Zhang D, Gao L. 2019. Deciphering tea tree chloroplast and mitochondrial genomes of Camellia sinensis var. assamica. Scientific Data 6:209

doi: 10.1038/s41597-019-0201-8
[2]

Shao C, Zhang C, Lv Z, Shen C. 2021. Pre- and post-harvest exposure to stress influence quality-related metabolites in fresh tea leaves (Camellia sinensis). Scientia Horticulturae 281:109984

doi: 10.1016/j.scienta.2021.109984
[3]

Ge S, Wang Y, Shen K, Wang Q, Ahammed GJ, et al. 2024. Effects of differential shading on summer tea quality and tea garden microenvironment. Plants 13:202

doi: 10.3390/plants13020202
[4]

Xiao Y, Li M, Liu Y, Xu S, Zhong K, et al. 2021. The effect of Eurotium cristatum (MF800948) fermentation on the quality of autumn green tea. Food Chemistry 358:129848

doi: 10.1016/j.foodchem.2021.129848
[5]

Fang Y, You J, Xie K, Xie W, Xiong L. 2008. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Molecular Genetics and Genomics 280:547−63

doi: 10.1007/s00438-008-0386-6
[6]

Trishla VS, Kirti PB. 2021. Structure-function relationship of Gossypium hirsutum NAC transcription factor, GhNAC4 with regard to ABA and abiotic stress responses. Plant Science 302:110718

doi: 10.1016/j.plantsci.2020.110718
[7]

Kim HJ, Nam HG, Lim PO. 2016. Regulatory network of NAC transcription factors in leaf senescence. Current Opinion in Plant Biology 33:48−56

doi: 10.1016/j.pbi.2016.06.002
[8]

Olsen AN, Ernst HA, Leggio LL, Skriver K. 2005. NAC transcription factors: structurally distinct, functionally diverse. Trends in Plant Science 10:79−87

doi: 10.1016/j.tplants.2004.12.010
[9]

Ernst HA, Olsen AN, Skriver K, Larsen S, Leggio LL. 2004. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Reports 5:297−303

doi: 10.1038/sj.embor.7400093
[10]

Olsen AN, Ernst HA, Leggio LL, Skriver K. 2005. DNA-binding specificity and molecular functions of NAC transcription factors. Plant Science 169:785−97

doi: 10.1016/j.plantsci.2005.05.035
[11]

Shahnejat-Bushehri S, Tarkowska D, Sakuraba Y, Balazadeh S. 2016. Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling. Nature Plants 2:16013

doi: 10.1038/nplants.2016.13
[12]

Hu R, Qi G, Kong Y, Kong D, Gao Q, et al. 2010. Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biology 10:145

doi: 10.1186/1471-2229-10-145
[13]

Wang N, Zheng Y, Xin H, Fang L, Li S. 2013. Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera. Plant Cell Reports 32:61−75

doi: 10.1007/s00299-012-1340-y
[14]

Liu S, Guan Y, Weng Y, Liao B, Tong L, et al. 2023. Genome-wide identification of the NAC gene family and its functional analysis in Liriodendron. BMC Plant Biology 23:415

doi: 10.1186/s12870-023-04415-4
[15]

Yuan X, Wang H, Cai J, Li D, Song F. 2019. NAC transcription factors in plant immunity. Phytopathology Research 1:3

doi: 10.1186/s42483-018-0008-0
[16]

Singh AK, Sharma V, Pal AK, Acharya V, Ahuja PS. 2013. Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.). DNA Research 20:403−23

doi: 10.1093/dnares/dst019
[17]

Rushton PJ, Bokowiec MT, Han S, Zhang H, Brannock JF, et al. 2008. Tobacco transcription factors: novel insights into transcriptional regulation in the solanaceae. Plant Physiology 147:280−95

doi: 10.1104/pp.107.114041
[18]

Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, et al. 2011. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Research 18:263−76

doi: 10.1093/dnares/dsr015
[19]

Ling L, Song L, Wang Y, Guo C. 2017. Genome-wide analysis and expression patterns of the NAC transcription factor family in Medicago truncatula. Physiology and Molecular Biology of Plants 23:343−56

doi: 10.1007/s12298-017-0421-3
[20]

Su H, Zhang S, Yin Y, Zhu D, Han L. 2015. Genome-wide analysis of NAM-ATAF1, 2-CUC2 transcription factor family in Solanum lycopersicum. Journal of Plant Biochemistry and Biotechnology 24:176−83

doi: 10.1007/s13562-014-0255-9
[21]

Liu T, Song X, Duan W, Huang Z, Liu G, et al. 2014. Genome-wide analysis and expression patterns of NAC transcription factor family under different developmental stages and abiotic stresses in Chinese cabbage. Plant Molecular Biology Reporter 32:1041−56

doi: 10.1007/s11105-014-0712-6
[22]

Shiriga K, Sharma R, Kumar K, Yadav SK, Hossain F, et al. 2014. Genome-wide identification and expression pattern of drought-responsive members of the NAC family in maize. Meta Gene 2:407−17

doi: 10.1016/j.mgene.2014.05.001
[23]

Zhong R, Lee C, Ye ZH. 2010. Functional characterization of poplar wood-associated NAC domain transcription factors. Plant Physiology 152:1044−55

doi: 10.1104/pp.109.148270
[24]

Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. 2012. NAC transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta 1819:97−103

doi: 10.1016/j.bbagrm.2011.10.005
[25]

Shang X, Yu Y, Zhu L, Liu H, Chai Q, et al. 2020. A cotton NAC transcription factor GhirNAC2 plays positive roles in drought tolerance via regulating ABA biosynthesis. Plant Science 296:110498

doi: 10.1016/j.plantsci.2020.110498
[26]

Gong J, Zeng Y, Meng Q, Guan Y, Li C, et al. 2021. Red light-induced kumquat fruit coloration is attributable to increased carotenoid metabolism regulated by FcrNAC22. Journal of Experimental Botany 72:6274−90

doi: 10.1093/jxb/erab283
[27]

Ahmad M, Yan X, Li J, Yang Q, Jamil W, et al. 2018. Genome wide identification and predicted functional analyses of NAC transcription factors in Asian pears. BMC Plant Biology 18:214

doi: 10.1186/s12870-018-1427-x
[28]

Cao X, Wei C, Duan W, Gao Y, Kuang J, et al. 2021. Transcriptional and epigenetic analysis reveals that NAC transcription factors regulate fruit flavor ester biosynthesis. The Plant Journal 106:785−800

doi: 10.1111/tpj.15200
[29]

Wang J, Wang Y, Zhang J, Ren Y, Li M, et al. 2021. The NAC transcription factor ClNAC68 positively regulates sugar content and seed development in watermelon by repressing ClINV and ClGH3.6. Horticulture Research 8:214

doi: 10.1038/s41438-021-00649-1
[30]

Zhang X, Li L, Lang Z, Li D, He Y, et al. 2022. Genome-wide characterization of NAC transcription factors in Camellia sinensis and the involvement of CsNAC28 in drought tolerance. Frontiers in Plant Science 13:1065261

doi: 10.3389/fpls.2022.1065261
[31]

Li S, Cao L, Zhou Z, Cheng Y, Zhang X, et al. 2024. The miR164a targets CsNAC1 to negatively regulate cold tolerance of tea plants (Camellia sinensis). Journal of Integrative Agriculture In press

doi: 10.1016/j.jia.2024.12.033
[32]

Ma W, Kang X, Liu P, She K, Zhang Y, et al. 2022. The NAC-like transcription factor CsNAC7 positively regulates the caffeine biosynthesis-related gene yhNMT1 in Camellia sinensis. Horticulture Research 9:uhab046

doi: 10.1093/hr/uhab046
[33]

Song SS, Ran WX, Gao LH, Wang YC, Lv WY, et al. 2024. A functional study reveals CsNAC086 regulated the biosynthesis of flavonols in Camellia sinensis. Planta 259:147

doi: 10.1007/s00425-024-04426-x
[34]

Yu CS, Chen YC, Lu CH, Hwang JK. 2006. Prediction of protein subcellular localization. Proteins: Structure, Function, and Bioinformatics 64:643−51

doi: 10.1002/prot.21018
[35]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[36]

Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673−80

doi: 10.1093/nar/22.22.4673
[37]

Wellburn AR, Lichtenthaler H. 1984. Formulae and program to determine total carotenoids and chlorophylls A and B of leaf extracts in different solvents. In Advances in Photosynthesis Research, ed. Sybesma C. Dordrecht: Springer. Vol 2. pp. 9–12 doi: 10.1007/978-94-017-6368-4_3

[38]

Willems E, Leyns L, Vandesompele J. 2008. Standardization of real-time PCR gene expression data from independent biological replicates. Analytical Biochemistry 379:127−29

doi: 10.1016/j.ab.2008.04.036
[39]

Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, et al. 2003. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Research 10:239−47

doi: 10.1093/dnares/10.6.239
[40]

Dorjee T, Cui Y, Zhang Y, Liu Q, Li X, et al. 2024. Characterization of NAC gene family in Ammopiptanthus mongolicus and functional analysis of AmNAC24, an osmotic and cold-stress-induced NAC gene. Biomolecules 14:182

doi: 10.3390/biom14020182
[41]

Zhao Y, Wang W, Zhan X, Zhang M, Xiao Y, et al. 2024. CsCHLI plays an important role in chlorophyll biosynthesis of tea plant (Camellia sinensis). Beverage Plant Research 4:e004

doi: 10.48130/bpr-0023-0037
[42]

Zhou H, Xu Y, Wu Q, Yang J, Lei P. 2024. Identification and comparison of nonvolatile profiles of the four Keemun black tea types. Beverage Plant Research 4:e036

doi: 10.48130/bpr-0024-0025
[43]

Li W, Wen Y, Lai S, Kong D, Wang H, et al. 2024. Accumulation patterns of flavonoids during multiple development stages of tea seedlings. Beverage Plant Research 4:e013

doi: 10.48130/bpr-0024-0006
[44]

Shen Y, Li X, Ma G, Zhao Y, Jiang X, et al. 2022. Roles of YABBY transcription factors in the regulation of leaf development and abiotic stress responses in Camellia sinensis. Beverage Plant Research 2:4

doi: 10.48130/BPR-2022-0004
[45]

Wang Z, Chen Z, Wu Y, Mu M, Jiang J, et al. 2024. Genome-wide identification and characterization of NAC transcription factor family members in Trifolium pratense and expression analysis under lead stress. BMC Genomics 25:128

doi: 10.1186/s12864-023-09944-8
[46]

Liang S, Wang H, Yamashita H, Zhang S, Lang X, et al. 2024. Genome-wide identification and expression analysis of sucrose phosphate synthase and sucrose-6-phosphate phosphatase family genes in Camellia sinensis. Beverage Plant Research 4:e015

doi: 10.48130/bpr-0024-0007
[47]

Singh S, Koyama H, Bhati KK, Alok A. 2021. The biotechnological importance of the plant-specific NAC transcription factor family in crop improvement. Journal of Plant Research 134:475−95

doi: 10.1007/s10265-021-01270-y
[48]

Liu GS, Li HL, Grierson D, Fu DQ. 2022. NAC transcription factor family regulation of fruit ripening and quality: a review. Cells 11:525

doi: 10.3390/cells11030525
[49]

Melo BP, Lourenço-Tessutti IT, Fraga OT, Pinheiro LB, de Jesus Lins CB, et al. 2021. Contrasting roles of GmNAC065 and GmNAC085 in natural senescence, plant development, multiple stresses and cell death responses. Scientific Reports 11:11178

doi: 10.1038/s41598-021-90767-6
[50]

Wang A, Xu K. 2012. Characterization of two orthologs of REVERSION-TO-ETHYLENE SENSITIVITY1 in apple. Journal of Molecular Biology Research 2:24−41

doi: 10.5539/jmbr.v2n1p24
[51]

Li T, Fang K, Tie Y, Lu Y, Lei Y, et al. 2024. NAC transcription factor ATAF1 negatively modulates the PIF-regulated hypocotyl elongation under a short-day photoperiod. Plant, Cell & Environment 47:3253−65

doi: 10.1111/pce.14944
[52]

Cao X, Li X, Su Y, Zhang C, Wei C, et al. 2024. Transcription factor PpNAC1 and DNA demethylase PpDML1 synergistically regulate peach fruit ripening. Plant Physiology 194:2049−68

doi: 10.1093/plphys/kiad627
[53]

Fu BL, Wang WQ, Li X, Qi TH, Shen QF, et al. 2023. A dramatic decline in fruit citrate induced by mutagenesis of a NAC transcription factor, AcNAC1. Plant Biotechnology Journal 21:1695−706

doi: 10.1111/pbi.14070
[54]

Wang X, Liu Y, Hao C, Li T, Majeed U, et al. 2023. Wheat NAC-A18 regulates grain starch and storage proteins synthesis and affects grain weight. Theoretical and Applied Genetics 136:123

doi: 10.1007/s00122-023-04365-3
[55]

Sun Q, Jiang S, Zhang T, Xu H, Fang H, et al. 2019. Apple NAC transcription factor MdNAC52 regulates biosynthesis of anthocyanin and proanthocyanidin through MdMYB9 and MdMYB11. Plant Science 289:110286

doi: 10.1016/j.plantsci.2019.110286
[56]

Wei W, Yang YY, Chen JY, Lakshmanan P, Kuang JF, et al. 2023. MaNAC029 modulates ethylene biosynthesis and fruit quality and undergoes MaXB3-mediated proteasomal degradation during banana ripening. Journal of Advanced Research 53:33−47

doi: 10.1016/j.jare.2022.12.004
[57]

Meng Q, Zhang C, Gai J, Yu D. 2007. Molecular cloning, sequence characterization and tissue-specific expression of six NAC-like genes in soybean (Glycine max (L.) Merr.). Journal of Plant Physiology 164:1002−12

doi: 10.1016/j.jplph.2006.05.019
[58]

Zhu W, Liu X, Cheng X, Li Y, Liu L. 2023. Shading effects revisited: comparisons of spring and autumn shading treatments reveal a seasonal-dependent regulation on amino acids in tea leaves. Beverage Plant Research 3:5

doi: 10.48130/BPR-2023-0005
[59]

Yang B, Yang C, Chen J, Ren H, Wang K, et al. 2025. CiNAC2 positively regulates drought stress tolerance by promoting superoxide dismutase activity in pecan (Carya illinoinensis). Horticultural Plant Journal 11:133−44

doi: 10.1016/j.hpj.2024.01.008
[60]

Jiang D, Zhou L, Chen W, Ye N, Xia J, et al. 2019. Overexpression of a microRNA-targeted NAC transcription factor improves drought and salt tolerance in Rice via ABA-mediated pathways. Rice 12:76

doi: 10.1186/s12284-019-0334-6
[61]

Morishita T, Kojima Y, Maruta T, Nishizawa-Yokoi A, Yabuta Y, et al. 2009. Arabidopsis NAC transcription factor, ANAC078, regulates flavonoid biosynthesis under high-light. Plant & Cell Physiology 50:2210−22

doi: 10.1093/pcp/pcp159