[1]

Yuan T. 1838. Henei county chronicles (in Chinese). Qinyang, China: Chengwen Publishing House

[2]

Shan N, Wang PT, Zhu QL, Sun JY, Zhang HY, et al. 2020. Comprehensive characterization of yam tuber nutrition and medicinal quality of Dioscorea opposita and D. alata from different geographic groups in China. Journal of Integrative Agriculture 19:2839−48

doi: 10.1016/S2095-3119(20)63270-1
[3]

Zhao X, Long Z, Lu Y, Jin W. 2024. Research and application progress on efficacy of active substances in Dioscorea opposite Thunb. Acta Agriculturae Zhejiangensis 36:920−31

doi: 10.3969/j.issn.1004-1524.20230494
[4]

Ju Y, Xue Y, Huang J, Zhai Q, Wang XH. 2014. Antioxidant Chinese yam polysaccharides and its pro-proliferative effect on endometrial epithelial cells. International Journal of Biological Macromolecules 66:81−85

doi: 10.1016/j.ijbiomac.2014.01.070
[5]

Liu Y, Li H, Fan Y, Man S, Liu Z, et al. 2016. Antioxidant and antitumor activities of the extracts from Chinese yam (Dioscorea opposite Thunb.) flesh and peel and the effective compounds. Journal of Food Science 81:H1553−H1564

doi: 10.1111/1750-3841.13322
[6]

Liu M, Tang X, Zhao Z, Ruan Y, Wang L, et al. 2024. Physicochemical properties of anthocyanins from the peels of Dioscorea oppostita. Central South Pharmacy 22:2764−68

[7]

Cassidy A. 2018. Berry anthocyanin intake and cardiovascular health. Molecular Aspects of Medicine 61:76−82

doi: 10.1016/j.mam.2017.05.002
[8]

Xu L, Yue Q, Bian FE, Zhai H, Yao Y. 2018. Melatonin treatment enhances the polyphenol content and antioxidant capacity of red wine. Horticultural Plant Journal 4:144−50

doi: 10.1016/j.hpj.2018.05.004
[9]

Shi L, Li X, Fu Y, Li C. 2023. Environmental stimuli and phytohormones in anthocyanin biosynthesis: a comprehensive review. International Journal of Molecular Sciences 24:16415

doi: 10.3390/ijms242216415
[10]

Li P, Li YJ, Zhang FJ, Zhang GZ, Jiang XY, et al. 2017. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. The Plant Journal 89:85−103

doi: 10.1111/tpj.13324
[11]

Park NI, Xu H, Arasu MV, Al-Dhabi NA, Park SU. 2015. Subcellular localization studies of three phenylalanine ammonia-lyases and cinnamate 4-hydroxylase from Scutellaria baicalensis using GFP fusion proteins. OnLine Journal of Biological Sciences 15:70−73

doi: 10.3844/ojbsci.2015.70.73
[12]

Manela N, Oliva M, Ovadia R, Sikron-Persi N, Ayenew B, et al. 2015. Phenylalanine and tyrosine levels are rate-limiting factors in production of health promoting metabolites in Vitis vinifera cv. Gamay Red cell suspension. Frontiers in Plant Science 6:538

doi: 10.3389/fpls.2015.00538
[13]

Falcone Ferreyra ML, Rius SP, Casati P. 2012. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science 3:222

doi: 10.3389/fpls.2012.00222
[14]

Li Z, Ahammed GJ. 2023. Hormonal regulation of anthocyanin biosynthesis for improved stress tolerance in plants. Plant Physiology and Biochemistry 201:107835

doi: 10.1016/j.plaphy.2023.107835
[15]

Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends in Plant Science 20:176−85

doi: 10.1016/j.tplants.2014.12.001
[16]

Ichino T, Fuji K, Ueda H, Takahashi H, Koumoto Y, et al. 2014. GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana. The Plant Journal 80:410−23

doi: 10.1111/tpj.12637
[17]

Stracke R, Jahns O, Keck M, Tohge T, Niehaus K, et al. 2010. Analysis of production of flavonol glycosides-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation. New Phytologist 188:985−1000

doi: 10.1111/j.1469-8137.2010.03421.x
[18]

Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, et al. 2004. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. The Plant Journal 39:366−80

doi: 10.1111/j.1365-313X.2004.02138.x
[19]

Bredeson JV, Lyons JB, Oniyinde IO, Okereke NR, Kolade O, et al. 2022. Chromosome evolution and the genetic basis of agronomically important traits in greater yam. Nature Communications 13:2001

doi: 10.1038/s41467-022-29114-w
[20]

Arnau G, Bhattacharjee R, Mn S, Chair H, Malapa R, et al. 2017. Understanding the genetic diversity and population structure of yam (Dioscorea alata L. ) using microsatellite markers. PLoS One 12:e0174150

doi: 10.1371/journal.pone.0174150
[21]

Zhou YH, Huo XW, Liu XY, Tai LH, Miao HQ, et al. 2015. Chromosome number and karyotype analysis of Henan Tiegun yam (Dioscorea opposita Thunb.). Journal of Henan Agricultural University 49:305−10

doi: 10.16445/j.cnki.1000-2340.2015.03.004
[22]

Yang Y. 2017. Determination of main chemical components, anthocyanin extraction and antitumor activity of purple yam. Master's thesis. Southwest Jiaotong University, Chengdu, China

[23]

Fang ZX, Ni YY, Li HM. 2002. Stability in different conditions of anthocyanins from purple sweet patato. Food and Fermentation Industries 28:31−34

doi: 10.13995/j.cnki.11-1802/ts.2002.10.009
[24]

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114−20

doi: 10.1093/bioinformatics/btu170
[25]

Brown J, Pirrung M, McCue LA. 2017. FQC Dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics 33:3137−39

doi: 10.1093/bioinformatics/btx373
[26]

Cheng H, Jarvis ED, Fedrigo O, Koepfli KP, Urban L, et al. 2022. Haplotype-resolved assembly of diploid genomes without parental data. Nature Biotechnology 40:1332−35

doi: 10.1038/s41587-022-01261-x
[27]

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754−60

doi: 10.1093/bioinformatics/btp324
[28]

Ou S, Jiang N. 2018. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiology 176:1410−22

doi: 10.1104/pp.17.01310
[29]

Rhie A, Walenz BP, Koren S, Phillippy AM. 2020. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biology 21:245

doi: 10.1186/s13059-019-1906-x
[30]

Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, et al. 2017. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356:92−95

doi: 10.1126/science.aal3327
[31]

Durand NC, Shamim MS, Machol I, Rao SSP, Huntley MH, et al. 2016. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Systems 3:95−98

doi: 10.1016/j.cels.2016.07.002
[32]

Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology 20:238

doi: 10.1186/s13059-018-1612-0
[33]

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:1792−97

doi: 10.1093/nar/gkh340
[34]

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312−13

doi: 10.1093/bioinformatics/btu033
[35]

Chen C, Ruhfel BR, Li J, Wang Z, Zhang L, et al. 2023. Phylotranscriptomics of Swertiinae (Gentianaceae) reveals that key floral traits are not phylogenetically correlated. Journal of Integrative Plant Biology 65:1490−504

doi: 10.1111/jipb.13464
[36]

De Bie T, Cristianini N, Demuth JP, Hahn MW. 2006. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22:1269−71

doi: 10.1093/bioinformatics/btl097
[37]

Vadakkemukadiyil Chellappan B, Pr S, Vijayan S, Rajan VS, Sasi A, et al. 2019. High quality draft genome of Arogyapacha (Trichopus zeylanicus), an important medicinal plant endemic to Western Ghats of India. G3 9:2395−404

doi: 10.1534/g3.119.400164
[38]

Tamiru M, Natsume S, Takagi H, White B, Yaegashi H, et al. 2017. Genome sequencing of the staple food crop white Guinea yam enables the development of a molecular marker for sex determination. BMC Biology 15:86

doi: 10.1186/s12915-016-0343-5
[39]

Ou S, Chen J, Jiang N. 2018. Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic Acids Research 46:e126

doi: 10.1093/nar/gky730
[40]

Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, et al. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463−67

doi: 10.1038/nature06148
[41]

Sun P, Jiao B, Yang Y, Shan L, Li T, et al. 2022. WGDI: a user-friendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes. Molecular Plant 15:1841−51

doi: 10.1016/j.molp.2022.10.018
[42]

Guo L, Winzer T, Yang X, Li Y, Ning Z, et al. 2018. The opium poppy genome and morphinan production. Science 362:343−47

doi: 10.1126/science.aat4096
[43]

Jiao Y. 2018. Double the genome, double the fun: genome duplications in angiosperms. Molecular Plant 11:357−58

doi: 10.1016/j.molp.2018.02.009
[44]

Sagasser M, Lu GH, Hahlbrock K, Weisshaar B. 2002. A. thaliana TRANSPARENT TESTA 1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins. Genes & Development 16:138−49

doi: 10.1101/gad.212702
[45]

Zhang B, Schrader A. 2017. TRANSPARENT TESTA GLABRA 1-dependent regulation of flavonoid biosynthesis. Plants 6:65

doi: 10.3390/plants6040065
[46]

Liu Z, Zhang Y, Wang J, Li P, Zhao C, et al. 2015. Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings. Plant Science 238:64−72

doi: 10.1016/j.plantsci.2015.06.001
[47]

Xu W, Jiao Y, Li R, Zhang N, Xiao D, et al. 2014. Chinese wild-growing Vitis amurensis ICE1 and ICE2 encode MYC-type bHLH transcription activators that regulate cold tolerance in Arabidopsis. PLoS One 9:e102303

doi: 10.1371/journal.pone.0102303
[48]

Tao R, Yu W, Gao Y, Ni J, Yin L, et al. 2020. Light-induced basic/helix-loop-helix64 enhances anthocyanin biosynthesis and undergoes CONSTITUTIVELY PHOTOMORPHOGENIC 1-mediated degradation in pear. Plant Physiology 184:1684−701

doi: 10.1104/pp.20.01188
[49]

Sunil L, Shetty NP. 2022. Biosynthesis and regulation of anthocyanin pathway genes. Applied Microbiology and Biotechnology 106:1783−98

doi: 10.1007/s00253-022-11835-z
[50]

Li S. 2014. Transcriptional control of flavonoid biosynthesis: fine-tuning of the MYB-bHLH-WD40 (MBW) complex. Plant Signaling & Behavior 9:e27522

doi: 10.4161/psb.27522
[51]

Lee CM, Thomashow MF. 2012. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 109:15054−59

doi: 10.1073/pnas.1211295109