[1]

Stiti N, Missihoun TD, Kotchoni SO, Kirch HH, Bartels D. 2011. Aldehyde dehydrogenases in Arabidopsis thaliana: biochemical requirements, metabolic pathways, and functional analysis. Frontiers in Plant Science 2:65

doi: 10.3389/fpls.2011.00065
[2]

Lindahl R. 1992. Aldehyde dehydrogenases and their role in carcinogenesis. Critical Reviews in Biochemistry and Molecular Biology 27:283−335

doi: 10.3109/10409239209082565
[3]

Gao Z, Loescher WH. 2000. NADPH supply and mannitol biosynthesis. Characterization, cloning, and regulation of the non-reversible glyceraldehyde-3-phosphate dehydrogenase in celery leaves. Plant Physiology 124:321−30

doi: 10.1104/pp.124.1.321
[4]

Sunkar R, Bartels D, Kirch HH. 2003. Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. The Plant Journal 35:452−64

doi: 10.1046/j.1365-313X.2003.01819.x
[5]

Vasiliou V, Bairoch A, Tipton KF, Nebert DW. 1999. Eukaryotic aldehyde dehydrogenase (ALDH) genes: human polymorphisms, and recommended nomenclature based on divergent evolution and chromosomal mapping. Pharmacogenetics 9:421−34

[6]

Guo J, Sun W, Liu H, Chi J, Odiba AS, et al. 2020. Aldehyde dehydrogenase plays crucial roles in response to lower temperature stress in Solanum tuberosum and Nicotiana benthamiana. Plant Science 297:110525

doi: 10.1016/j.plantsci.2020.110525
[7]

Islam MS, Hasan MS, Hasan MN, Prodhan SH, Islam T, et al. 2021. Genome-wide identification, evolution, and transcript profiling of Aldehyde dehydrogenase superfamily in potato during development stages and stress conditions. Scientific Reports 11:18284

doi: 10.1038/s41598-021-97691-9
[8]

Islam MS, Ghosh A. 2022. Evolution, family expansion, and functional diversification of plant aldehyde dehydrogenases. Gene 829:146522

doi: 10.1016/j.gene.2022.146522
[9]

Wood AJ, Duff RJ. 2009. The aldehyde dehydrogenase (ALDH) gene superfamily of the moss Physcomitrella patens and the algae Chlamydomonas reinhardtii and Ostreococcus tauri. The Bryologist 112:1−11

doi: 10.1639/0007-2745-112.1.1
[10]

Islam MS, Mohtasim M, Islam T, Ghosh A. 2022. Aldehyde dehydrogenase superfamily in sorghum: genome-wide identification, evolution, and transcript profiling during development stages and stress conditions. BMC Plant Biology 22:316

doi: 10.1186/s12870-022-03708-4
[11]

Ren Z, Liu N, Jia H, Sun M, Ma S, et al. 2024. Discovery of aldehyde dehydrogenase as a potential fungicide target and screening of its natural inhibitors against Fusarium verticillioides. Journal of Agricultural and Food Chemistry 72:19424−35

doi: 10.1021/acs.jafc.4c05553
[12]

Gu H, Pan Z, Jia M, Fang H, Li J, et al. 2024. Genome-wide identification and analysis of the cotton ALDH gene family. BMC Genomics 25:513

doi: 10.1186/s12864-024-10388-x
[13]

Ma S, Wang M, Li P, Guo L, Xiong L, et al. 2024. Transcriptome and metabolome analysis reveal the lip color variation in Cymbidium floribundum. Ornamental Plant Research 4:e019

doi: 10.48130/opr-0024-0017
[14]

Zhang D, Zhao XW, Li YY, Ke SJ, Yin WL, et al. 2022. Advances and prospects of orchid research and industrialization. Horticulture Research 9:uhac220

doi: 10.1093/hr/uhac220
[15]

Yang F, Gao J, Li J, Wei Y, Xie Q, et al. 2024. The China orchid industry: past and future perspectives. Ornamental Plant Research 4:e002

doi: 10.48130/opr-0023-0024
[16]

Hassani A, Azapagic A, Shokri N. 2021. Global predictions of primary soil salinization under changing climate in the 21st century. Nature Communications 12:6663

doi: 10.1038/s41467-021-26907-3
[17]

Berg A, Sheffield J. 2018. Climate change and drought: the soil moisture perspective. Current Climate Change Reports 4:180−91

doi: 10.1007/s40641-018-0095-0
[18]

Yang FX, Gao J, Wei YL, Ren R, Zhang GQ, et al. 2021. The genome of Cymbidium sinense revealed the evolution of orchid traits. Plant Biotechnology Journal 19:2501−16

doi: 10.1111/pbi.13676
[19]

Ai Y, Li Z, Sun WH, Chen J, Zhang D, et al. 2021. The Cymbidium genome reveals the evolution of unique morphological traits. Horticulture Research 8:255

doi: 10.1038/s41438-021-00683-z
[20]

Sun Y, Chen GZ, Huang J, Liu DK, Xue F, et al. 2021. The Cymbidium goeringii genome provides insight into organ development and adaptive evolution in orchids. Ornamental Plant Research 1:10

doi: 10.48130/opr-2021-0010
[21]

Kotchoni SO, Jimenez-Lopez JC, Gao D, Edwards V, Gachomo EW, et al. 2010. Modeling-dependent protein characterization of the rice aldehyde dehydrogenase (ALDH) superfamily reveals distinct functional and structural features. PLoS One 5:e11516

doi: 10.1371/journal.pone.0011516
[22]

Chen C, Wu Y, Li J, Wang X, Zeng Z, et al. 2023. TBtools-II: a "one for all, all for one" bioinformatics platform for biological big-data mining. Molecular Plant 16:1733−42

doi: 10.1016/j.molp.2023.09.010
[23]

Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, et al. 2020. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources 20:348−55

doi: 10.1111/1755-0998.13096
[24]

Chow CN, Yang CW, Wu NY, Wang HT, Tseng KC, et al. 2024. PlantPAN 4.0: updated database for identifying conserved non-coding sequences and exploring dynamic transcriptional regulation in plant promoters. Nucleic Acids Research 52:D1569−D1578

doi: 10.1093/nar/gkad945
[25]

Dai X, Zhuang Z, Zhao PX. 2018. psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Research 46:W49−W54

doi: 10.1093/nar/gky316
[26]

Shaffique S, Ali Shah A, Kang SM, Injamum-Ul-Hoque M, Shahzad R, et al. 2024. Melatonin: dual players mitigating drought-induced stress in tomatoes via modulation of phytohormones and antioxidant signaling cascades. BMC Plant Biology 24:1101

doi: 10.1186/s12870-024-05752-8
[27]

Feng Y, Chen Z, Chen L, Han M, Liu J, et al. 2025. Comprehensive evaluation of physio-morphological traits of alfalfa (Medicago sativa L.) varieties under salt stress. Physiologia Plantarum 177:e70044

doi: 10.1111/ppl.70044
[28]

Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884−i890

doi: 10.1093/bioinformatics/bty560
[29]

Zhu M, Wang Q, Tu S, Ke S, Bi Y, et al. 2023. Genome-wide identification analysis of the R2R3-MYB transcription factor family in Cymbidium sinense for insights into drought stress responses. International Journal of Molecular Sciences 24:3235

doi: 10.3390/ijms24043235
[30]

Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, et al. 2000. Quantitative reverse transcription–polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Analytical Biochemistry 285:194−204

doi: 10.1006/abio.2000.4753
[31]

Lyu F, Han F, Ge C, Mao W, Chen L, et al. 2023. OmicStudio: a composable bioinformatics cloud platform with real-time feedback that can generate high-quality graphs for publication. iMeta 2:e85

doi: 10.1002/imt2.85
[32]

Xu T, Zhang L, Yang Z, Wei Y, Dong T. 2021. Identification and functional characterization of plant MiRNA under salt stress shed light on salinity resistance improvement through MiRNA manipulation in crops. Frontiers in Plant Science 12:665439

doi: 10.3389/fpls.2021.665439
[33]

Guan Y, Tanwar UK, Sobieszczuk-Nowicka E, Floryszak-Wieczorek J, Arasimowicz-Jelonek M. 2022. Comparative genomic analysis of the aldehyde dehydrogenase gene superfamily in Arabidopsis thaliana - searching for the functional key to hypoxia tolerance. Frontiers in Plant Science 13:1000024

doi: 10.3389/fpls.2022.1000024
[34]

Elbakary M, Hammad SF, Youseif SH, Soliman HSM. 2024. Revealing the diversity of Jojoba-associated fungi using amplicon metagenome approach and assessing the in vitro biocontrol activity of its cultivable community. World Journal of Microbiology and Biotechnology 40:205

doi: 10.1007/s11274-024-03986-0
[35]

Kirch HH, Bartels D, Wei Y, Schnable PS, Wood AJ. 2004. The ALDH gene superfamily of Arabidopsis. Trends in Plant Science 9:371−77

doi: 10.1016/j.tplants.2004.06.004
[36]

Gao C, Han B. 2009. Evolutionary and expression study of the aldehyde dehydrogenase (ALDH) gene superfamily in rice (Oryza sativa). Gene 431:86−94

doi: 10.1016/j.gene.2008.11.010
[37]

Bhuya AR, Shuvo MRK, Al Nahid A, Ghosh A. 2025. Genome-wide identification, classification, and expression profiling of the aldehyde dehydrogenase gene family in pepper. Plant Physiology and Biochemistry 219:109413

doi: 10.1016/j.plaphy.2024.109413
[38]

Yang D, Chen H, Zhang Y, Wang Y, Zhai Y, et al. 2024. Genome-wide identification and expression analysis of the melon aldehyde dehydrogenase (ALDH) gene family in response to abiotic and biotic stresses. Plants 13:2939

doi: 10.3390/plants13202939
[39]

Li MH, Liu KW, Li Z, Lu HC, Ye QL, et al. 2022. Genomes of leafy and leafless Platanthera orchids illuminate the evolution of mycoheterotrophy. Nature Plants 8:373−88

doi: 10.1038/s41477-022-01127-9
[40]

Kamarajan P, Rajendiran TM, Kinchen J, Bermúdez M, Danciu T, et al. 2017. Head and Neck squamous cell carcinoma metabolism draws on glutaminolysis, and stemness is specifically regulated by glutaminolysis via aldehyde dehydrogenase. Journal of Proteome Research 16:1315−26

doi: 10.1021/acs.jproteome.6b00936
[41]

Cao S, Ye Y, Zheng Z, Zhong S, Wang Y, et al. 2024. Aux/IAA gene family identification and analysis reveals roles in flower opening and abiotic stress response in Osmanthus fragrans. Ornamental Plant Research 4:e027

doi: 10.48130/opr-0024-0025
[42]

Zhao Y, Zhang Y, Li T, Ni C, Bai X, et al. 2022. TaNF-YA7-5B, a gene encoding nuclear factor Y (NF–Y) subunit A in Triticum aestivum, confers plant tolerance to PEG-inducing dehydration simulating drought through modulating osmotic stress-associated physiological processes. Plant Physiology and Biochemistry 188:81−96

doi: 10.1016/j.plaphy.2022.07.036
[43]

Gao J, Lan T. 2016. Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli. Scientific Reports 6:19467

doi: 10.1038/srep19467
[44]

Sinha S, Mishra M. 2022. Polyamines: metabolism, regulation, and functions in crop abiotic stress tolerance. In Augmenting Crop Productivity in Stress Environment, eds Ansari SA, Ansari MI, Husen A. Singapore: Springer. pp. 317–44 doi: 10.1007/978-981-16-6361-1_19

[45]

Wang P, Wang CM, Gao L, Cui YN, Yang HL, et al. 2020. Aliphatic suberin confers salt tolerance to Arabidopsis by limiting Na+ influx, K+ efflux and water backflow. Plant and Soil 448:603−20

doi: 10.1007/s11104-020-04464-w
[46]

Liepman AH, Olsen LJ. 2001. Peroxisomal alanine : glyoxylate aminotransferase (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana. The Plant Journal 25:487−98

doi: 10.1046/j.1365-313x.2001.00961.x
[47]

Li M, Yu B. 2021. Recent advances in the regulation of plant miRNA biogenesis. RNA Biology 18:2087−96

doi: 10.1080/15476286.2021.1899491
[48]

Yu Y, Ni Z, Wang Y, Wan H, Hu Z, et al. 2019. Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic Arabidopsis thaliana. Plant Science 285:68−78

doi: 10.1016/j.plantsci.2019.05.003
[49]

Wang Y, Zhang F, Cui W, Chen K, Zhao R, et al. 2019. The FvPHR1 transcription factor control phosphate homeostasis by transcriptionally regulating miR399a in woodland strawberry. Plant Science 280:258−68

doi: 10.1016/j.plantsci.2018.12.025