[1]

Chen CPJ, Ferreira G. 2023. Evaluation of walking activity data during pregnancy as an indicator of pregnancy loss in dairy cattle. JDS Communications 4:166−68

doi: 10.3168/jdsc.2022-0304
[2]

Franco OJ, Drost M, Thatcher MJ, Shille VM, Thatcher WW. 1987. Thatcher WW. Fetal survival in the cow after pregnancy diagnosis by palpation per rectum. Theriogenology 27:631−44

doi: 10.1016/0093-691x(87)90057-4
[3]

Hirako M, Takahashi T, Takahashi H, Patel OV, Domeki I. 2003. Changes in plasma estrogen concentrations during the first trimester of gestation in dairy cows: comparison with the origin of embryos and fetal number. Japan Agricultural Research Quarterly 37:195−200

doi: 10.6090/jarq.37.195
[4]

Stronge AJH, Sreenan JM, Diskin MG, Mee JF, Kenny DA, et al. 2005. Post-insemination milk progesterone concentration and embryo survival in dairy cows. Theriogenology 64:1212−24

doi: 10.1016/j.theriogenology.2005.02.007
[5]

Ghaffari Laleh V, Ghaffari Laleh R, Pirany N, Moghadaszadeh Ahrabi M. 2008. Measurement of EPF for detection of cow pregnancy using rosette inhibition test. Theriogenology 70:105−7

doi: 10.1016/j.theriogenology.2008.02.003
[6]

Shahin M, Friedrich M, Gauly M, Holtz W. 2014. Pregnancy-associated glycoprotein (PAG) profile of Holstein-Friesian cows as compared to dual-purpose and beef cows. Reproduction in Domestic Animals 49:618−20

doi: 10.1111/rda.12336
[7]

Racewicz P, Sickinger M, Włodarek J, Jaśkowski JM. 2016. Ultrasonographic diagnosis of early pregnancy in cattle using different ultrasound systems. Tierarztliche Praxis Ausgabe G, Grosstiere/Nutztiere 44:151−56

doi: 10.15653/TPG-150816
[8]

Tiplady KM, Trinh MH, Davis SR, Sherlock RG, Spelman RJ, et al. 2022. Pregnancy status predicted using milk mid-infrared spectra from dairy cattle. Journal of Dairy Science 105:3615−32

doi: 10.3168/jds.2021-21516
[9]

Brand W, Wells AT, Smith SL, Denholm SJ, Wall E. 2021. Predicting pregnancy status from mid-infrared spectroscopy in dairy cow milk using deep learning. Journal of Dairy Science 104:4980−90

doi: 10.3168/jds.2020-18367
[10]

Wilsdorf LJ, Keisler DH, Poock SE, Lamberson WR, Escalante RC, et al. 2016. Short communication: test for nonpregnancy in dairy cows based on plasma progesterone concentrations before and after timed artificial insemination. Journal of Dairy Science 99:5858−65

doi: 10.3168/jds.2016-10864
[11]

Moore T, Williams JM, Becerra-Rodriguez MA, Dunne M, Kammerer R, et al. 2022. Pregnancy-specific glycoproteins: evolution, expression, functions and disease associations. Reproduction 163:R11−R23

doi: 10.1530/REP-21-0390
[12]

Barbato O, Menchetti L, Brecchia G, Barile VL. 2022. Using Pregnancy-Associated Glycoproteins (PAGs) to improve reproductive management: from dairy cows to other dairy livestock. Animals 12:2033

doi: 10.3390/ani12162033
[13]

Garth Sasser R, Ruder CA, Ivani KA, Butler JE, Hamilton WC. 1986. Detection of pregnancy by radioimmunoassay of a novel pregnancy-specific protein in serum of cows and a profile of serum concentrations during gestation. Biology of Reproduction 35:936−42

doi: 10.1095/biolreprod35.4.936
[14]

Reese ST, Pereira MHC, Edwards JL, Vasconcelos JLM, Pohler KG. 2018. Pregnancy diagnosis in cattle using pregnancy associated glycoprotein concentration in circulation at day 24 of gestation. Theriogenology 106:178−85

doi: 10.1016/j.theriogenology.2017.10.020
[15]

Durocher J, Moore RK, Castonguay MH, Albaaj A, LeBlanc SJ. 2022. Bayesian estimation of sensitivity and specificity of a milk pregnancy-associated glycoprotein ELISA test for pregnancy diagnosis between 23 and 27 days after insemination in Holstein dairy cows. Journal of Dairy Science 105:6985−96

doi: 10.3168/jds.2022-21905
[16]

Giordano JO, Guenther JN, Lopes G Jr, Fricke PM. 2012. Changes in serum pregnancy-associated glycoprotein, pregnancy-specific protein B, and progesterone concentrations before and after induction of pregnancy loss in lactating dairy cows. Journal of Dairy Science 95:683−97

doi: 10.3168/jds.2011-4609
[17]

Forde N, Bazer FW, Spencer TE, Lonergan P. 2015. 'Conceptualizing' the endometrium: identification of conceptus-derived proteins during early pregnancy in cattle. Biology of Reproduction 92:156

doi: 10.1095/biolreprod.115.129296
[18]

Nahhas F, Barnea E. 1990. Human embryonic origin early pregnancy factor before and after implantation. American Journal of Reproductive Immunology 22:105−8

doi: 10.1111/j.1600-0897.1990.tb00651.x
[19]

Morton H, Hegh V, Clunie GJA. 1974. Immunosuppression detected in pregnant mice by rosette inhibition test. Nature 249:459−60

doi: 10.1038/249459a0
[20]

Grosso MC, Bellingeri RV, Motta CE, Alustiza FE, Picco NY, et al. 2015. Immunohistochemical distribution of early pregnancy factor in ovary, oviduct and placenta of pregnant gilts. Biotechnic & Histochemistry 90:14−24

doi: 10.3109/10520295.2014.931599
[21]

Karen A, Sousa NM, Beckers JF, Bajcsy ÁC, Tibold J, et al. 2015. Comparison of a commercial bovine pregnancy-associated glycoprotein ELISA test and a pregnancy-associated glycoprotein radiomimmunoassay test for early pregnancy diagnosis in dairy cattle. Animal Reproduction Science 159:31−37

doi: 10.1016/j.anireprosci.2015.05.005
[22]

Ott TL. 2020. Immunological detection of pregnancy: evidence for systemic immune modulation during early pregnancy in ruminants. Theriogenology 150:498−503

doi: 10.1016/j.theriogenology.2020.04.010
[23]

Fan XG, Zheng ZQ. 1997. A study of early pregnancy factor activity in preimplantation. American Journal of Reproductive Immunology 37:359−64

doi: 10.1111/j.1600-0897.1997.tb00244.x
[24]

Rawat P, Bathla S, Baithalu R, Yadav ML, Kumar S, et al. 2016. Identification of potential protein biomarkers for early detection of pregnancy in cow urine using 2D DIGE and label free quantitation. Clinical Proteomics 13:15

doi: 10.1186/s12014-016-9116-y
[25]

Dinges SS, Hohm A, Vandergrift LA, Nowak J, Habbel P, et al. 2019. Cancer metabolomic markers in urine: evidence, techniques and recommendations. Nature Reviews Urology 16:339−62

doi: 10.1038/s41585-019-0185-3
[26]

Alharbi RA. 2020. Proteomics approach and techniques in identification of reliable biomarkers for diseases. Saudi Journal of Biological Sciences 27:968−74

doi: 10.1016/j.sjbs.2020.01.020
[27]

Liang L, Rasmussen MH, Piening B, Shen X, Chen S, et al. 2020. Metabolic dynamics and prediction of gestational age and time to delivery in pregnant women. Cell 181:1680−1692.e15

doi: 10.1016/j.cell.2020.05.002
[28]

Ren Y, Zhang Q, He F, Qi M, Fu B, et al. 2024. Metabolomics reveals early pregnancy biomarkers in sows: a non-invasive diagnostic approach. Frontiers in Veterinary Science 11:1396492

doi: 10.3389/fvets.2024.1396492
[29]

Zhai Y, Xia F, Shi L, Ma W, Lv X, et al. 2023. Early pregnancy markers in the serum of ewes identified via proteomic and metabolomic analyses. International Journal of Molecular Sciences 24:14054

doi: 10.3390/ijms241814054
[30]

Jamwal S, Jena MK, Tyagi N, Kancharla S, Kolli P, et al. 2023. Proteomic approaches to unravel the molecular dynamics of early pregnancy in farm animals: an in-depth review. Journal of Developmental Biology 12(1):2

doi: 10.3390/jdb12010002
[31]

Hernández-Vargas P, Muñoz M, Domínguez F. 2020. Identifying biomarkers for predicting successful embryo implantation: applying single to multi-OMICs to improve reproductive outcomes. Human Reproduction Update 26(2):264−301

doi: 10.1093/humupd/dmz042
[32]

Rahnavard A, Chatterjee R, Wen H, Gaylord C, Mugusi S, et al. 2024. Molecular epidemiology of pregnancy using omics data: advances, success stories, and challenges. Journal of Translational Medicine 22(1):106

doi: 10.1186/s12967-024-04876-7
[33]

Kharb S, Joshi A. 2023. Multi-omics and machine learning for the prevention and management of female reproductive health. Frontiers in Endocrinology 14:1081667

doi: 10.3389/fendo.2023.1081667
[34]

Thomas JM, Locke JWC, Bishop BE, Abel JM, Ellersieck MR, et al. 2017. The 9-d CIDR-PG protocol II: Characterization of endocrine parameters, ovarian dynamics, and pregnancy rates to fixed-time AI following use of long-term CIDR-based estrus synchronization among mature beef cows. Theriogenology 103:185−90

doi: 10.1016/j.theriogenology.2017.07.046
[35]

Ren Y, Yu G, Shi C, Liu L, Guo Q, et al. 2022. Majorbio Cloud: a one-stop, comprehensive bioinformatic platform for multiomics analyses. Imeta 1(2):e12

doi: 10.1002/imt2.12
[36]

Nordqvist S, Kårehed K, Stavreus-Evers A, Åkerud H. 2011. Histidine-rich glycoprotein polymorphism and pregnancy outcome: a pilot study. Reproductive BioMedicine Online 23:213−19

doi: 10.1016/j.rbmo.2011.04.004
[37]

Haukkamaa M, Morgan WT, Koskelo P. 1983. Serum histidine-rich glycoprotein during pregnancy and hormone treatment. Scand J Clin Lab Invest 43:591−595

doi: 10.3109/00365518309168836
[38]

Elenis E, Skalkidou A, Skoog-Svanberg A, Sydsjö G, Stavreus-Evers A, et al. 2018. HRG C633T polymorphism and risk of gestational hypertensive disorders: a pilot study. BMC Medical Genetics 19:44

doi: 10.1186/s12881-018-0550-8
[39]

Nordqvist S, Karehed K, Hambiliki F, Wanggren K, Stavreus-Evers A, et al. 2010. The presence of histidine-rich glycoprotein in the female reproductive tract and in embryos. Reproductive Sciences 17:941−47

doi: 10.1177/1933719110374366
[40]

Kopp A, Hebecker M, Svobodová E, Józsi M. 2012. Factor h: a complement regulator in health and disease, and a mediator of cellular interactions. Biomolecules 2:46−75

doi: 10.3390/biom2010046
[41]

He YD, Xu BN, Song D, Wang YQ, Yu F, et al. 2020. Normal range of complement components during pregnancy: a prospective study. American Journal of Reproductive Immunology 83:e13202

doi: 10.1111/aji.13202
[42]

Derzsy Z, Prohászka Z, Rigó J Jr, Füst G, Molvarec A. 2010. Activation of the complement system in normal pregnancy and preeclampsia. Molecular Immunology 47:1500−6

doi: 10.1016/j.molimm.2010.01.021
[43]

Banadakoppa M, Balakrishnan M, Yallampalli C. 2020. Common variants of fetal and maternal complement genes in preeclampsia: pregnancy specific complotype. Scientific Reports 10:4811

doi: 10.1038/s41598-020-60539-9
[44]

Yang Y, Lu HL, Zhang J, Yu HY, Wang HW, et al. 2006. Relationships among acylation stimulating protein, adiponectin and complement C3 in lean vs obese type 2 diabetes. International Journal of Obesity 30:439−46

doi: 10.1038/sj.ijo.0803173
[45]

Li J, Shen Y, Tian H, Xie S, Ji Y, et al. 2021. The role of complement factor H in gestational diabetes mellitus and pregnancy. BMC Pregnancy Childbirth 21:562

doi: 10.1186/s12884-021-04031-w
[46]

Min L, Cheng J, Zhao S, Tian H, Zhang Y, et al. 2016. Plasma-based proteomics reveals immune response, complement and coagulation cascades pathway shifts in heat-stressed lactating dairy cows. Journal of Proteomics 146:99−108

doi: 10.1016/j.jprot.2016.06.008
[47]

Misra UK, Gonzalez-Gronow M, Gawdi G, Hart JP, Johnson CE, et al. 2002. The role of Grp 78 in alpha 2-macroglobulin-induced signal transduction. Evidence from RNA interference that the low density lipoprotein receptor-related protein is associated with, but not necessary for, GRP 78-mediated signal transduction. The Journal of Biological Chemistry 277:42082−87

doi: 10.1074/jbc.M206174200
[48]

Misra UK, Chu CT, Rubenstein DS, Gawdi G, Pizzo SV. 1993. Receptor-recognized alpha 2-macroglobulin-methylamine elevates intracellular calcium, inositol phosphates and cyclic AMP in murine peritoneal macrophages. The Biochemical Journal 290:885−91

doi: 10.1042/bj2900885
[49]

Chu CT, Pizzo SV. 1993. Receptor-mediated antigen delivery into macrophages. Complexing antigen to alpha 2-macroglobulin enhances presentation to T cells. Journal of Immunology 150: 48-58

[50]

Bowers EV, Horvath JJ, Bond JE, Cianciolo GJ, Pizzo SV. 2009. Antigen delivery by alpha(2)-macroglobulin enhances the cytotoxic T lymphocyte response. Journal of Leukocyte Biology 86:1259−68

doi: 10.1189/jlb.1008653
[51]

Tayade C, Esadeg S, Fang Y, Croy BA. 2005. Functions of alpha 2 macroglobulins in pregnancy. Molecular and Cellular Endocrinology 245:60−66

doi: 10.1016/j.mce.2005.10.004
[52]

Zannis VI, Kardassis D, Zanni EE. 1993. Genetic mutations affecting human lipoproteins, their receptors, and their enzymes. Advances in Human Genetics 21:145−319

doi: 10.1007/978-1-4615-3010-7_3
[53]

Melhem H, Kallol S, Huang X, Lüthi M, Ontsouka CE, et al. 2019. Placental secretion of apolipoprotein A1 and E: the anti-atherogenic impact of the placenta. Scientific Reports 9:6225

doi: 10.1038/s41598-019-42522-1
[54]

Kallol S, Huang X, Müller S, Ontsouka CE, Albrecht C. 2018. Novel Insights into Concepts and Directionality of Maternal-Fetal Cholesterol Transfer across the Human Placenta. International Journal of Molecular Sciences 19:2334

doi: 10.3390/ijms19082334
[55]

Weiss A, Leinwand LA. 1996. The mammalian myosin heavy chain gene family. Annu Rev Cell Dev Biol 12:417−439

doi: 10.1146/annurev.cellbio.12.1.417
[56]

Ma X, Zhang X, Qiao Y, Zhong S, Xing Y, et al. 2022. Weighted gene co-expression network analysis of embryos and first instar larvae of the horseshoe crab Tachypleus tridentatus uncovers development gene networks. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 42:100980

doi: 10.1016/j.cbd.2022.100980