[1]

Waseem M, Liu Y, Xia R. 2020. Long non-coding RNAs, the dark matter: an emerging regulatory component in plants. International Journal of Molecular Sciences 22:86

doi: 10.3390/ijms22010086
[2]

Ariel F, Romero-Barrios N, Jégu T, Benhamed M, Crespi M. 2015. Battles and hijacks: noncoding transcription in plants. Trends in Plant Science 20:362−71

doi: 10.1016/j.tplants.2015.03.003
[3]

Yang H, Cui Y, Feng Y, Hu Y, Liu L, et al. 2023. Long non-coding RNAs of plants in response to abiotic stresses and their regulating roles in promoting environmental adaption. Cells 12:729

doi: 10.3390/cells12050729
[4]

Zhao X, Li F, Ali M, Li X, Fu X, et al. 2024. Emerging roles and mechanisms of lncRNAs in fruit and vegetables. Horticulture Research 11:uhae046

doi: 10.1093/hr/uhae046
[5]

Statello L, Guo CJ, Chen LL, Huarte M. 2021. Gene regulation by long non-coding RNAs and its biological functions. Nature Reviews Molecular Cell Biology 22:96−118

doi: 10.1038/s41580-020-00315-9
[6]

Chao H, Hu Y, Zhao L, Xin S, Ni Q, et al. 2022. Biogenesis, functions, interactions, and resources of non-coding RNAs in plants. International Journal of Molecular Sciences 23:3695

doi: 10.3390/ijms23073695
[7]

Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, et al. 2012. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nature Cell Biology 14:659−65

doi: 10.1038/ncb2521
[8]

Crespi MD, Jurkevitch E, Poiret M, d'Aubenton-Carafa Y, Petrovics G, et al. 1994. enod40, a gene expressed during nodule organogenesis, codes for a non-translatable RNA involved in plant growth. The EMBO Journal 13:5099−112

doi: 10.1002/j.1460-2075.1994.tb06839.x
[9]

Chen L, Zhu QH. 2022. The evolutionary landscape and expression pattern of plant lincRNAs. RNA biology 19:1190−207

doi: 10.1080/15476286.2022.2144609
[10]

Ashraf M, McNeilly T. 2004. Salinity tolerance in Brassica oilseeds. Critical Reviews in Plant Sciences 23:157−74

doi: 10.1080/07352680490433286
[11]

Domínguez-Rosas E, Hernández-Oñate MÁ, Fernandez-Valverde SL, Tiznado-Hernández ME. 2023. Plant long non-coding RNAs: identification and analysis to unveil their physiological functions. Frontiers in Plant Science 14:1275399

doi: 10.3389/fpls.2023.1275399
[12]

Yu X, Yang J, Li X, Liu X, Sun C, et al. 2013. Global analysis of cis-natural antisense transcripts and their heat-responsive nat-siRNAs in Brassica rapa. BMC Plant Biology 13:208

doi: 10.1186/1471-2229-13-208
[13]

Huang L, Dong H, Zhou D, Li M, Liu Y, et al. 2018. Systematic identification of long non-coding RNA s during pollen development and fertilization in Brassica rapa. The Plant Journal 96:203−22

doi: 10.1111/tpj.14016
[14]

Song X, Hu J, Wu T, Yang Q, Feng X, et al. 2021. Comparative analysis of long noncoding RNAs in angiosperms and characterization of long noncoding RNAs in response to heat stress in Chinese cabbage. Horticulture Research 8:48

doi: 10.1038/s41438-021-00484-4
[15]

Liu T, Wu P, Wang Q, Wang W, Zhang C, et al. 2018. Comparative transcriptome discovery and elucidation of the mechanism of long noncoding RNAs during vernalization in Brassica rapa. Plant Growth Regulation 85:27−39

doi: 10.1007/s10725-018-0371-y
[16]

Tan C, Liu H, Ren J, Ye X, Feng H, Liu Z. 2019. Single-molecule real-time sequencing facilitates the analysis of transcripts and splice isoforms of anthers in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Plant Biology 19:517

doi: 10.1186/s12870-019-2133-z
[17]

Eom SH, Lee HJ, Wi SH, Kim SK, Hyun TK. 2021. Identification and functional prediction of long non-coding RNAs responsive to heat stress in heading type Chinese cabbage. Zemdirbyste-Agriculture 108:371−76

doi: 10.13080/z-a.2021.108.047
[18]

Wang A, Hu J, Gao C, Chen G, Wang B, et al. 2019. Genome-wide analysis of long non-coding RNAs unveils the regulatory roles in the heat tolerance of Chinese cabbage (Brassica rapa ssp. chinensis). Scientific Reports 9:5002

doi: 10.1038/s41598-019-41428-2
[19]

Lohani N, Golicz AA, Allu AD, Bhalla PL, Singh MB. 2023. Genome-wide analysis reveals the crucial role of lncRNAs in regulating the expression of genes controlling pollen development. Plant Cell Reports 42:337−54

doi: 10.1007/s00299-022-02960-0
[20]

Wei X, Wang X, Zhao Y, Chen W, Nath UK, et al. 2024. Transcriptome analysis reveals the potential lncRNA-mRNA modules involved in genetic male sterility and fertility of Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Plant Biology 24:289

doi: 10.1186/s12870-024-05003-w
[21]

Joshi RK, Megha S, Basu U, Rahman MH, Kav NNV. 2016. Genome wide identification and functional prediction of long non-coding RNAs responsive to Sclerotinia sclerotiorum infection in Brassica napus. PLoS One 11:e0158784

doi: 10.1371/journal.pone.0158784
[22]

Waseem M, Yang X, Aslam MM, Li M, Zhu L, et al. 2022. Genome-wide identification of long non-coding RNAs in two contrasting rapeseed (Brassica napus L.) genotypes subjected to cold stress. Environmental and Experimental Botany 201:104969

doi: 10.1016/j.envexpbot.2022.104969
[23]

Tan X, Li S, Hu L, Zhang C. 2020. Genome-wide analysis of long non-coding RNAs (lncRNAs) in two contrasting rapeseed (Brassica napus L.) genotypes subjected to drought stress and re-watering. BMC Plant Biology 20:81

doi: 10.1186/s12870-020-2286-9
[24]

Feng SJ, Zhang XD, Liu XS, Tan SK, Chu SS, et al. 2016. Characterization of long non-coding RNAs involved in cadmium toxic response in Brassica napus. RSC Advances 6:82157−73

doi: 10.1039/C6RA05459E
[25]

Bhatia G, Singh A, Verma D, Sharma S, Singh K. 2020. Genome-wide investigation of regulatory roles of lncRNAs in response to heat and drought stress in Brassica juncea (Indian mustard). Environmental and Experimental Botany 171:103922

doi: 10.1016/j.envexpbot.2019.103922
[26]

Tribhuvan KU, Shivakumaraswamy M, Mishra T, Kaur S, Sarkar B, et al. 2024. Identification, genomic localization, and functional validation of salt-stress-related lncRNAs in Indian Mustard (Brassica juncea L.). BMC Genomics 25:1121

doi: 10.1186/s12864-024-10964-1
[27]

Yadav P, Priyam P, Yadav G, Yadav A, Jain R, et al. 2024. Identification of lncRNAs regulating seed traits in Brassica juncea and development of a comprehensive seed omics database. Functional & Integrative Genomics 24:189

doi: 10.1007/s10142-024-01470-4
[28]

Zhu X, Tai X, Ren Y, Chen J, Bo T. 2019. Genome-wide analysis of coding and long non-coding RNAs involved in cuticular wax biosynthesis in cabbage (Brassica oleracea L. var. Capitata). International Journal of Molecular Sciences 20:2820

doi: 10.3390/ijms20112820
[29]

Ahmed W, Xia Y, Li R, Bai G, Siddique KHM, et al. 2020. Non-coding RNAs: functional roles in the regulation of stress response in Brassica crops. Genomics 112:1419−24

doi: 10.1016/j.ygeno.2019.08.011
[30]

Shen E, Zhu X, Hua S, Chen H, Ye C, et al. 2018. Genome-wide identification of oil biosynthesis-related long non-coding RNAs in allopolyploid Brassica napus. BMC Genomics 19:745

doi: 10.1186/s12864-018-5117-8
[31]

Li Y, Tan Z, Zeng C, Xiao M, Lin S, et al. 2023. Regulation of seed oil accumulation by lncRNAs in Brassica napus. Biotechnology for Biofuels and Bioproducts 16:22

doi: 10.1186/s13068-022-02256-1
[32]

Wang X, Zhao D, Li X, Zhou B, Chang T, et al. 2023. Integrated Analysis of LncRNA–MRNA regulatory networks related to lipid metabolism in High-Oleic-Acid rapeseed. International Journal of Molecular Sciences 24:6277

doi: 10.3390/ijms24076277
[33]

Xing M, Peng Z, Guan C, Guan M. 2023. Comparative study on abortion characteristics of Nsa CMS and Pol CMS and analysis of long non-coding RNAs related to pollen abortion in Brassica napus. PLoS One 18:e0284287

doi: 10.1371/journal.pone.0284287
[34]

Song JH, Cao JS, Yu XL, Xiang X. 2007. BcMF11, a putative pollen-specific non-coding RNA from Brassica campestris ssp. chinensis. Journal of Plant Physiology 164:1097−100

doi: 10.1016/j.jplph.2006.10.002
[35]

Song JH, Cao JS, Wang CG. 2013. BcMF11, a novel non-coding RNA gene from Brassica campestris, is required for pollen development and male fertility. Plant Cell Reports 32:21−30

doi: 10.1007/s00299-012-1337-6
[36]

Lin S, Dong H, Zhang F, Qiu L, Wang F, et al. 2014. BcMF8, a putative arabinogalactan protein-encoding gene, contributes to pollen wall development, aperture formation and pollen tube growth in Brassica campestris. Annals of Botany 113:777−88

doi: 10.1093/aob/mct315
[37]

Zhang F, Dong H, Liu Y, Feng Y, Zhou D, et al. 2018. BcMF11 and its homologous sequences may form a lncRNA family in Brassica diploids. Acta Physiologiae Plantarum 40:65

doi: 10.1007/s11738-018-2640-9
[38]

Liu Y, Zhu QF, Li WY, Chen P, Xue J, et al. 2023. The pivotal role of noncoding RNAs in flowering time regulation. Genes 14:2114

doi: 10.3390/genes14122114
[39]

Dai Y, Gao X, Zhang S, Li F, Zhang H, et al. 2024. Exploring the regulatory dynamics of BrFLC-associated lncRNA in modulating the flowering response of Chinese cabbage. nternational Journal of Molecular Sciences 25:1924

doi: 10.3390/ijms25031924
[40]

Kinoshita Y, Motoki K, Hosokawa M. 2023. Upregulation of tandem duplicated BoFLC1 genes is associated with the non-flowering trait in Brassica oleracea var. capitata. Theoretical and Applied Genetics 136:41

doi: 10.1007/s00122-023-04311-3
[41]

Kim S, Kim JA, Kang H, Kim DH. 2022. A premature stop codon in BrFLC2 transcript results in early flowering in oilseed-type Brassica rapa plants. Plant Molecular Biology 108:241−55

doi: 10.1007/s11103-021-01231-y
[42]

Kakizaki T, Kato T, Fukino N, Ishida M, Hatakeyama K, et al. 2011. Identification of quantitative trait loci controlling late bolting in Chinese cabbage (Brassica rapa L.) parental line Nou 6 gou. Breeding Science 61: 151-59

[43]

Xi X, Wei K, Gao B, Liu J, Liang J, et al. 2018. BrFLC5: a weak regulator of flowering time in Brassica rapa. Theoretical and Applied Genetics 131:2107−16

doi: 10.1007/s00122-018-3139-x
[44]

Akter A, Kakizaki T, Itabashi E, Kunita K, Shimizu M, et al. 2023. Characterization of FLOWERING LOCUS C 5 in Brassica rapa L. Molecular Breeding 43:58

doi: 10.1007/s11032-023-01405-0
[45]

Zhou D, Zhao S, Zhou H, Chen J, Huang L. 2023. A lncRNA bra-miR156HG regulates flowering time and leaf morphology as a precursor of miR156 in Brassica campestris and Arabidopsis thaliana. Plant Science 337:111889

doi: 10.1016/j.plantsci.2023.111889
[46]

Pillai AJ, Walia P. 2024. Heat stress in Indian mustard (Brassica juncea L.): A critical review of impact and adaptation strategies. Plant Cell Biotechnology and Molecular Biology 25:1−11

doi: 10.56557/pcbmb/2024/v25i5-68673
[47]

Rani R, Mawlong I, Balbeer B, Sujith Kumar MS, Rai PK, et al. 2024. Proteomic, biochemical and peptidomics based analysis reveals heat responsive changes in the seedlings of Brassica juncea. Journal of Plant Biochemistry and Biotechnology 33:570−89

doi: 10.1007/s13562-024-00914-z
[48]

Shea DJ, Nishida N, Takada S, Itabashi E, Takahashi S, et al. 2019. Long noncoding RNAs in Brassica rapa L. following vernalization. Scientific Reports 9:9302

doi: 10.1038/s41598-019-45650-w
[49]

Wei J, Li H, Huang X, Zhao Y, Ouyang L, et al. 2024. Elucidating the regulatory role of long non-coding RNAs in drought stress response during seed germination in leaf mustard. PeerJ 12:e17661

doi: 10.7717/peerj.17661
[50]

Tan X, Long W, Ma N, Sang S, Cai S. 2024. Transcriptome analysis suggested that lncRNAs regulate rapeseed seedlings in responding to drought stress by coordinating the phytohormone signal transduction pathways. BMC Genomics 25:704

doi: 10.1186/s12864-024-10624-4
[51]

Ilyas M, Maqsood MF, Shahbaz M, Zulfiqar U, Ahmad K, et al. 2024. Alleviating salinity stress in canola (Brassica napus L.) through exogenous application of salicylic acid. BMC Plant Biology 24:611

doi: 10.1186/s12870-024-05314-y
[52]

Bandehagh A, Dehghanian Z, Henry R, Hossain MA. 2021. Salinity tolerance in Canola: insights from proteomic studies. In Brassica breeding and biotechnology. London: IntechOpen. doi: 10.5772/intechopen.96649

[53]

Aslam MM, Okal EJ, Waseem M. 2023. Cadmium toxicity impacts plant growth and plant remediation strategies. Plant Growth Regulation 99:397−412

doi: 10.1007/s10725-022-00917-7
[54]

Nandni, Bhuria M, Kaur R, Singh K. 2024. Role of non-coding RNAs in disease resistance in plants. In Biotechnological Advances for Disease Tolerance in Plants. Singapore: Springer. pp. 167-90 doi: 10.1007/978-981-99-8874-7_7

[55]

Das Laha S, Kundu A, Podder S. 2024. Impact of biotic stresses on the Brassicaceae family and opportunities for crop improvement by exploiting genotyping traits. Planta 259:97

doi: 10.1007/s00425-024-04379-1
[56]

Akter MA, Mehraj H, Miyaji N, Takahashi S, Takasaki-Yasuda T, et al. 2021. Transcriptional association between mRNAs and their paired natural antisense transcripts following Fusarium oxysporum inoculation in Brassica rapa L. Horticulturae 8:17

doi: 10.3390/horticulturae8010017
[57]

Zhang B, Su T, Li P, Xin X, Cao Y, et al. 2021. Identification of long noncoding RNAs involved in resistance to downy mildew in Chinese cabbage. Horticulture Research 8:44

doi: 10.1038/s41438-021-00479-1
[58]

Zhu H, Li X, Xi D, Zhai W, Zhang Z, et al. 2019. Integrating long noncoding RNAs and mRNAs expression profiles of response to Plasmodiophora brassicae infection in Pakchoi (Brassica campestris ssp. chinensis Makino). PLoS One 14:e0224927

doi: 10.1371/journal.pone.0224927
[59]

Summanwar A, Basu U, Rahman H, Kav N. 2019. Identification of lncRNAs responsive to infection by Plasmodiophora brassicae in clubroot-susceptible and -resistant Brassica napus Lines carrying resistance introgressed from rutabaga. Molecular Plant-Microbe Interactions 32:1360−77

doi: 10.1094/MPMI-12-18-0341-R
[60]

Hafeez U, Ali M, Hassan SM, Akram MA, Zafar A. 2023. Advances in breeding and engineering climate-resilient crops: a comprehensive review. International Journal of Research and Advances in Agricultural Sciences 2:85−99

[61]

Yadav A, Mathan J, Dubey AK, Singh A. 2024. The emerging role of non-coding RNAs (ncRNAs) in plant growth, development, and stress response signaling. Non-Coding RNA 10:13

doi: 10.3390/ncrna10010013
[62]

Lin YR, Lee JY, Tseng MC, Lee CY, Shen CH, et al. 2018. Subtropical adaptation of a temperate plant (Brassica oleracea var. italica) utilizes non-vernalization-responsive QTLs. Scientific Reports 8:13609

doi: 10.1038/s41598-018-31987-1
[63]

Bassegio D, Zanotto MD. 2020. Growth, yield, and oil content of Brassica species under Brazilian tropical conditions. Bragantia 79:203−12

doi: 10.1590/1678-4499.20190411