[1]

Du J, Ge X, Wei H, Zhang M, Bai Y, et al. 2023. PsPRE1 is a basic helix-loop-helix transcription factor that confers enhanced root growth and tolerance to salt stress in poplar. Forestry Research 3:16

doi: 10.48130/FR-2023-0016
[2]

Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M. 2007. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. The Plant Cell 19:118−30

doi: 10.1105/tpc.106.047761
[3]

Ahkami AH. 2023. Systems biology of root development in Populus: review and perspectives. Plant Science 335:111818

doi: 10.1016/j.plantsci.2023.111818
[4]

Legué V, Rigal A, Bhalerao RP. 2014. Adventitious root formation in tree species: involvement of transcription factors. Physiology Plantarum 151:192−98

doi: 10.1111/ppl.12197
[5]

Zhao M, Lei Y, Wu L, Qi H, Song Z, et al. 2024. The miR159a-PeMYB33 module regulates poplar adventitious rooting through the abscisic acid signal pathway. The Plant Journal 118:879−91

doi: 10.1111/tpj.16643
[6]

Nagle MF, Yuan J, Kaur D, Ma C, Peremyslova E, et al. 2023. GWAS identifies candidate genes controlling adventitious rooting in Populus trichocarpa. Horticulture Research 10:uhad125

doi: 10.1093/hr/uhad125
[7]

Ramírez-Carvajal GA, Morse AM, Dervinis C, Davis JM. 2009. The cytokinin type-B response regulator PtRR13 is a negative regulator of adventitious root development in Populus. Plant Physiology 150:759−71

doi: 10.1104/pp.109.137505
[8]

Pacurar DI, Perrone I, Bellini C. 2014. Auxin is a central player in the hormone cross-talks that control adventitious rooting. Physiologia Plantarum 151:83−96

doi: 10.1111/ppl.12171
[9]

Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, et al. 1995. Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. The Plant Cell 7:1405−19

doi: 10.1105/tpc.7.9.1405
[10]

Bellamine J, Penel C, Greppin H, Gaspar T. 1998. Confirmation of the role of auxin and calcium in the late phases of adventitious root formation. Plant Growth Regulation 26:191−94

doi: 10.1023/A:1006182801823
[11]

Ahkami AH, Melzer M, Ghaffari MR, Pollmann S, Ghorbani Javid M, et al. 2013. Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation. Planta 238:499−517

doi: 10.1007/s00425-013-1907-z
[12]

Gutierrez L, Bussell JD, Păcurar DI, Schwambach J, Păcurar M, et al. 2009. Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. The Plant Cell 21:3119−32

doi: 10.1105/tpc.108.064758
[13]

Gutierrez L, Mongelard G, Floková K, Păcurar DI, Novák O, et al. 2012. Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. The Plant Cell 24:2515−27

doi: 10.1105/tpc.112.099119
[14]

Salehin M, Bagchi R, Estelle M. 2015. SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. The Plant Cell 27:9−19

doi: 10.1105/tpc.114.133744
[15]

Dharmasiri N, Dharmasiri S, Estelle M. 2005. The F-box protein TIR1 is an auxin receptor. Nature 435:441−45

doi: 10.1038/nature03543
[16]

Kepinski S, Leyser O. 2005. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446−51

doi: 10.1038/nature03542
[17]

Guilfoyle TJ, Hagen G. 2007. Auxin response factors. Current Opinion in Plant Biology 10:453−60

doi: 10.1016/j.pbi.2007.08.014
[18]

Kalluri UC, Difazio SP, Brunner AM, Tuskan GA. 2007. Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa. BMC Plant Biology 7:59

doi: 10.1186/1471-2229-7-59
[19]

Liu S, Yang C, Wu L, Cai H, Li H, et al. 2020. The peu-miR160a-PeARF17.1/PeARF17.2 module participates in the adventitious root development of poplar. Plant Biotechnology Journal 18:457−69

doi: 10.1111/pbi.13211
[20]

Bollmark M, Eliasson L. 1986. Effects of exogenous cytokinins on root formation in pea cuttings. Physiologia Plantarum 68:662−66

doi: 10.1111/j.1399-3054.1986.tb03414.x
[21]

Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, et al. 2003. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. The Plant Cell 15:2532−50

doi: 10.1105/tpc.014928
[22]

Cheng ZJ, Wang L, Sun W, Zhang Y, Zhou C, et al. 2013. Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3. Plant Physiology 161:240−Z51

doi: 10.1104/pp.112.203166
[23]

Zhang K, Wang R, Zi H, Li Y, Cao X, et al. 2018. AUXIN RESPONSE FACTOR3 regulates floral meristem determinacy by repressing cytokinin biosynthesis and signaling. The Plant Cell 30:324−46

doi: 10.1105/tpc.17.00705
[24]

Miyawaki K, Matsumoto-Kitano M, Kakimoto T. 2004. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. The Plant Journal 37:128−38

doi: 10.1046/j.1365-313X.2003.01945.x
[25]

Yuan W, Yao F, Liu Y, Xiao H, Sun S, et al. 2024. Identification of the xyloglucan endotransglycosylase/hydrolase genes and the role of PagXTH12 in drought resistance in poplar. Forestry Research 4:e039

doi: 10.48130/forres-0024-0036
[26]

Zhang Y, Chen S, Xu L, Chu S, Yan X, et al. 2024. Transcription factor PagMYB31 positively regulates cambium activity and negatively regulates xylem development in poplar. The Plant Cell 36:1806−28

doi: 10.1093/plcell/koae040
[27]

Liu J, Sheng L, Xu Y, Li J, Yang Z, et al. 2014. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. The Plant Cell 26:1081−93

doi: 10.1105/tpc.114.122887
[28]

He H, Song XQ, Jiang C, Liu YL, Wang D, et al. 2022. The role of senescence-associated gene101 (PagSAG101a) in the regulation of secondary xylem formation in poplar. Journal of Integrative Plant Biology 64:73−86

doi: 10.1111/jipb.13195
[29]

Immanen J, Nieminen K, Silva HD, Rojas FR, Meisel LA, et al. 2013. Characterization of cytokinin signaling and homeostasis gene families in two hardwood tree species: Populus trichocarpa and Prunus persica. BMC Genomics 14:885

doi: 10.1186/1471-2164-14-885
[30]

Bustillo-Avendaño E, Ibáñez S, Sanz O, Barros JAS, Gude I, et al. 2018. Regulation of hormonal control, cell reprogramming, and patterning during de novo root organogenesis. Plant Physiology 176:1709−27

doi: 10.1104/pp.17.00980
[31]

Shu W, Zhou H, Jiang C, Zhao S, Wang L, et al. 2019. The auxin receptor TIR1 homolog (PagFBL 1) regulates adventitious rooting through interactions with Aux/IAA28 in Populus. Plant Biotechnology Journal 17:338−49

doi: 10.1111/pbi.12980
[32]

Sorin C, Bussell JD, Camus I, Ljung K, Kowalczyk M, et al. 2005. Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. The Plant Cell 17:1343−59

doi: 10.1105/tpc.105.031625
[33]

Zhang X, Yan F, Tang Y, Yuan Y, Deng W, et al. 2015. Auxin response gene SlARF3 plays multiple roles in tomato development and is involved in the formation of epidermal cells and trichomes. Plant and Cell Physiology 56:2110−24

doi: 10.1093/pcp/pcv136
[34]

Agulló-Antón MÁ, Ferrández-Ayela A, Fernández-García N, Nicolás C, Albacete A, et al. 2014. Early steps of adventitious rooting: morphology, hormonal profiling and carbohydrate turnover in carnation stem cuttings. Physiologia Plantarum 150:446−62

doi: 10.1111/ppl.12114
[35]

Rasmussen A, Hosseini SA, Hajirezaei MR, Druege U, Geelen D. 2015. Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis. Journal of Experimental Botany 66:1437−52

doi: 10.1093/jxb/eru499
[36]

Kuroha T, Satoh S. 2007. Involvement of cytokinins in adventitious and lateral root formation. Plant Root 1:27−33

doi: 10.3117/plantroot.1.27