[1]

Hao R, Yang S, Zhang Z, Zhang Y, Chang , et al. 2021. Identification and specific expression patterns in flower organs of ABCG genes related to floral scent from Prunus mume. Scientia Horticulturae 288:110218

doi: 10.1016/j.scienta.2021.110218
[2]

Maiti S, Mitra A. 2017. Morphological, physiological and ultrastructural changes in flowers explain the spatio-temporal emission of scent volatiles in Polianthes tuberosa L. Plant and Cell Physiology 58:2095−111

doi: 10.1093/pcp/pcx143
[3]

Liu Y, Jing SX, Luo SH, Li SH. 2019. Non-volatile natural products in plant glandular trichomes: chemistry, biological activities and biosynthesis. Natural Product Reports 36:626−65

doi: 10.1039/C8NP00077H
[4]

Yin H, Yin J, Liao Y, Lu S, Li C. 2021. Phenotype classification based on flower color, pigment distribution and epidermal cell shape of dendrobium hybrids. Acta Horticulturae Sinica 48:1907−20

doi: 10.16420/j.issn.0513-353x.2021-0406
[5]

Dang X, Chen B, Liu F, Ren H, Liu X, et al. 2020. Auxin signaling-mediated apoplastic pH modification functions in petal conical cell shaping. Cell Reports 30:3904−3916.e3

doi: 10.1016/j.celrep.2020.02.087
[6]

Adebesin F, Widhalm JR, Boachon B, Lefèvre F, Pierman B, et al. 2017. Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter. Science 356:1386−88

doi: 10.1126/science.aan0826
[7]

Skaliter O, Kitsberg Y, Sharon E, Shklarman E, Shor E, et al. 2021. Spatial patterning of scent in petunia corolla is discriminated by bees and involves the ABCG1 transporter. The Plant Journal 106:1746−58

doi: 10.1111/tpj.15269
[8]

Do THT, Martinoia E, Lee Y. 2018. Functions of ABC transporters in plant growth and development. Current Opinion in Plant Biology 41:32−38

doi: 10.1016/j.pbi.2017.08.003
[9]

Zhou Y, Wang Y, Zhang D, Liang J. 2024. Endomembrane-biased dimerization of ABCG16 and ABCG25 transporters determines their substrate selectivity in ABA-regulated plant growth and stress responses. Molecular Plant 17:478−95

doi: 10.1016/j.molp.2024.02.005
[10]

Charton L, Plett A, Linka N. 2019. Plant peroxisomal solute transporter proteins. Journal of Integrative Plant Biology 61:817−35

doi: 10.1111/jipb.12790
[11]

Li M, Yu G, Cao C, Liu P. 2021. Metabolism, signaling, and transport of jasmonates. Plant Communications 2:100231

doi: 10.1016/j.xplc.2021.100231
[12]

Li Q, Zheng J, Li S, Huang G, Skilling SJ, et al. 2017. Transporter-mediated nuclear entry of jasmonoyl-isoleucine is essential for jasmonate signaling. Molecular Plant 10:695−708

doi: 10.1016/j.molp.2017.01.010
[13]

Eberl F, Gershenzon J. 2017. Releasing plant volatiles, as simple as ABC. Science 356:1334−35

doi: 10.1126/science.aan8291
[14]

Garcia O, Bouige P, Forestier C, Dassa E. 2004. Inventory and comparative analysis of rice and Arabidopsis ATP-binding cassette (ABC) systems. Journal of Molecular Biology 343:249−65

doi: 10.1016/j.jmb.2004.07.093
[15]

Yu J, Ge J, Heuveling J, Schneider E, Yang M. 2015. Structural basis for substrate specificity of an amino acid ABC transporter. Proceedings of the National Academy of Sciences of the United States of America 112:5243−48

doi: 10.1073/pnas.1415037112
[16]

Fu S, Lu YS, Zhang X, Yang GZ, Chao D, et al. 2019. The ABC transporter ABCG36 is required for cadmium tolerance in rice. Journal of Experimental Botany 70:5909−18

doi: 10.1093/jxb/erz335
[17]

Lopez-Ortiz C, Dutta SK, Natarajan P, Peña-Garcia Y, Abburi V, et al. 2019. Genome-wide identification and gene expression pattern of ABC transporter gene family in Capsicum spp. PLoS One 14:e0215901

doi: 10.1371/journal.pone.0215901
[18]

Ofori PA, Mizuno A, Suzuki M, Martinoia E, Reuscher S, et al. 2018. Genome-wide analysis of ATP binding cassette (ABC) transporters in tomato. PLoS One 13:e0200854

doi: 10.1371/journal.pone.0200854
[19]

Zhang XD, Zhao KX, Yang ZM. 2018. Identification of genomic ATP binding cassette (ABC) transporter genes and Cd-responsive ABCs in Brassica napus. Gene 664:139−51

doi: 10.1016/j.gene.2018.04.060
[20]

Huang J, Li X, Chen X, Guo Y, Liang W, et al. 2021. Genome-wide identification of soybean ABC transporters relate to aluminum toxicity. International Journal of Molecular Sciences 22:6556

doi: 10.3390/ijms22126556
[21]

Hwang JU, Song WY, Hong D, Ko D, Yamaoka Y, et al. 2016. Plant ABC transporters enable many unique aspects of a terrestrial plant's lifestyle. Molecular Plant 9:338−55

doi: 10.1016/j.molp.2016.02.003
[22]

Ying W, Wang Y, Wei H, Luo Y, Ma Q, et al. 2024. Structure and function of the Arabidopsis ABC transporter ABCB19 in brassinosteroid export. Science 383:eadj4591

doi: 10.1126/science.adj4591
[23]

Gräfe K, Schmitt L. 2021. The ABC transporter G subfamily in Arabidopsis thaliana. Journal of Experimental Botany 72:92−106

doi: 10.1093/jxb/eraa260
[24]

Kuromori T, Sugimoto E, Shinozaki K. 2011. Arabidopsis mutants of AtABCG22, an ABC transporter gene, increase water transpiration and drought susceptibility. The Plant Journal 67:885−94

doi: 10.1111/j.1365-313X.2011.04641.x
[25]

Kang J, Yim S, Choi H, Kim A, Lee KP, et al. 2015. Abscisic acid transporters cooperate to control seed germination. Nature Communications 6:8113

doi: 10.1038/ncomms9113
[26]

Ko D, Kang J, Kiba T, Park J, Kojima M, et al. 2014. Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proceedings of the National Academy of Sciences of the United States of America 111:7150−55

doi: 10.1073/pnas.1321519111
[27]

An N, Huang X, Yang Z, Zhang M, Ma M, et al. 2024. Cryo-EM structure and molecular mechanism of the jasmonic acid transporter ABCG16. Nature Plants 10:2052−61

doi: 10.1038/s41477-024-01839-0
[28]

Aragón W, Reina-Pinto JJ, Serrano M. 2017. The intimate talk between plants and microorganisms at the leaf surface. Journal of Experimental Botany 68:5339−50

doi: 10.1093/jxb/erx327
[29]

Ziv C, Zhao Z, Gao YG, Xia Y. 2018. Multifunctional roles of plant cuticle during plant-pathogen interactions. Frontiers in Plant Science 9:1088

doi: 10.3389/fpls.2018.01088
[30]

Chen J, Zhu X, Zheng R, Tong Y, Peng Y, et al. 2024. Orchestrating of native Phalaenopsis flower scents lighted the way through artificial selective breeding partiality in the current resource utilization. Industrial Crops and Products 217:118850

doi: 10.1016/j.indcrop.2024.118850
[31]

Cao YH, Hu MJ, Tong Y, Zhang YP, Zhao K, et al. 2022. Identification of the ABC gene family and expression pattern analysis during flower development in Cymbidium ensifolium. Biotechnology Bulletin 38:162−74

doi: 10.13560/j.cnki.biotech.bull.1985.2022-0321
[32]

Feng Z, Li M, Li Y, Wan X, Yang X. 2020. Characterization of the orchid-like aroma contributors in selected premium tea leaves. Food Research International 129:108841

doi: 10.1016/j.foodres.2019.108841
[33]

Hong Y, Ahmad N, Zhang J, Lv Y, Yao N. 2023. The CtMYB63 -CtU-box1-CtUCH1 module regulates cold tolerance and Hydroxysafflor yellow A accumulation in Carthamus tinctorius. Industrial Crops and Products 202:117088

doi: 10.1016/j.indcrop.2023.117088
[34]

Zhang Q, Ahmad N, Li Z, He J, Wang N, et al. 2023. CtCYP71A1 promotes drought stress tolerance and lignin accumulation in safflower and Arabidopsis. Environmental and Experimental Botany 213:105430

doi: 10.1016/j.envexpbot.2023.105430
[35]

Zhou L, Wu S, Chen Y, Huang R, Cheng B, et al. 2024. Multi-omics analyzes of Rosa gigantea illuminate tea scent biosynthesis and release mechanisms. Nature Communications 15:8469

doi: 10.1038/s41467-024-52782-9
[36]

Banasiak J, Jasiński M. 2022. ATP-binding cassette transporters in nonmodel plants. New Phytologist 233:1597−612

doi: 10.1111/nph.17779