[1]

Cheung N, Mitchell P, Wong TY. 2010. Diabetic retinopathy. The Lancet 376:124−36

doi: 10.1016/S0140-6736(09)62124-3
[2]

Paul S, Kim C, Soliman MK, Sobol W, Echegaray JJ, et al. 2023. Can the future be bright with advances in diabetic eye care? Endocrinology and Metabolism Clinics of North America 52:89−99

doi: 10.1016/j.ecl.2022.06.004
[3]

Lin KY, Hsih WH, Lin YB, Wen CY, Chang TJ. 2021. Update in the epidemiology, risk factors, screening, and treatment of diabetic retinopathy. Journal of Diabetes Investigation 12:1322−25

doi: 10.1111/jdi.13480
[4]

Wautier JL, Wautier MP. 2022. Vascular permeability in diseases. International Journal of Molecular Sciences 23:3645

doi: 10.3390/ijms23073645
[5]

Wang W, Lo ACY. 2018. Diabetic retinopathy: pathophysiology and treatments. International Journal of Molecular Sciences 19:1816

doi: 10.3390/ijms19061816
[6]

Stitt AW, Curtis TM, Chen M, Medina RJ, McKay GJ, et al. 2016. The progress in understanding and treatment of diabetic retinopathy. Progress in Retinal and Eye Research 51:156−86

doi: 10.1016/j.preteyeres.2015.08.001
[7]

Bek T. 2017. Mitochondrial dysfunction and diabetic retinopathy. Mitochondrion 36:4−6

doi: 10.1016/j.mito.2016.07.011
[8]

Wu Y, Zou H. 2022. Research progress on mitochondrial dysfunction in diabetic retinopathy. Antioxidants 11:2250

doi: 10.3390/antiox11112250
[9]

Zhou Z, Fan Y, Zong R, Tan K. 2022. The mitochondrial unfolded protein response: a multitasking giant in the fight against human diseases. Ageing Research Reviews 81:101702

doi: 10.1016/j.arr.2022.101702
[10]

Ye Z, Chai R, Luan Y, Du Y, Xue W, et al. 2023. Trends in mitochondrial unfolded protein response research from 2004 to 2022: a bibliometric analysis. Frontiers in Cell and Developmental Biology 11:1146963

doi: 10.3389/fcell.2023.1146963
[11]

Yang M, Luo S, Chen W, He L, Liu D, et al. 2025. Mitochondrial unfolded protein response (mtUPR) and diseases. Current Medicinal Chemistry 32:1674−84

doi: 10.2174/0929867331666230822095924
[12]

Deng J, Wang D, Shi Y, Lin L, Gao W, et al. 2024. Mitochondrial unfolded protein response mechanism and its cardiovascular protective effects. Biomedicine & Pharmacotherapy 177:116989

doi: 10.1016/j.biopha.2024.116989
[13]

Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, Romero-Domínguez JM, Reche-López D, et al. 2023. Mitochondrial quality control via mitochondrial unfolded protein response (mtUPR) in ageing and neurodegenerative diseases. Biomolecules 13:1789

doi: 10.3390/biom13121789
[14]

Zhu L, Luo X, Fu N, Chen L. 2021. Mitochondrial unfolded protein response: a novel pathway in metabolism and immunity. Pharmacological Research 168:105603

doi: 10.1016/j.phrs.2021.105603
[15]

Zhang S, Guo H, Wang H, Liu X, Wang M, et al. 2024. A novel mitochondrial unfolded protein response-related risk signature to predict prognosis, immunotherapy and sorafenib sensitivity in hepatocellular carcinoma. Apoptosis 29:768−84

doi: 10.1007/s10495-024-01945-6
[16]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[17]

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, et al. 2015. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43:e47

doi: 10.1093/nar/gkv007
[18]

Hänzelmann S, Castelo R, Guinney J. 2013. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7

doi: 10.1186/1471-2105-14-7
[19]

Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

doi: 10.1186/1471-2105-9-559
[20]

Gao CH, Yu G, Cai P. 2021. ggVennDiagram: an intuitive, easy-to-use, and highly customizable R package to generate venn diagram. Frontiers in Genetics 12:706907

doi: 10.3389/fgene.2021.706907
[21]

Yu G, Wang LG, Han Y, He QY. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16:284−87

doi: 10.1089/omi.2011.0118
[22]

Zhou S, Lu H, Xiong M. 2021. Identifying immune cell infiltration and effective diagnostic biomarkers in rheumatoid arthritis by bioinformatics analysis. Frontiers in Immunology 12:726747

doi: 10.3389/fimmu.2021.726747
[23]

Alderden J, Pepper GA, Wilson A, Whitney JD, Richardson S, et al. 2018. Predicting pressure injury in critical care patients: a machine-learning model. American Journal of Critical Care 27:461−68

doi: 10.4037/ajcc2018525
[24]

Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, et al. 2011. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12:77

doi: 10.1186/1471-2105-12-77
[25]

Pan X, Jin X, Wang J, Hu Q, Dai B. 2021. Placenta inflammation is closely associated with gestational diabetes mellitus. American Journal of Translational Research 13:4068−79

[26]

Chi H, Xie X, Yan Y, Peng G, Strohmer DF, et al. 2022. Natural killer cell-related prognosis signature characterizes immune landscape and predicts prognosis of HNSCC. Frontiers in Immunology 13:1018685

doi: 10.3389/fimmu.2022.1018685
[27]

Lv X, Ding M, Liu Y. 2022. Landscape of infiltrated immune cell characterization in uveal melanoma to improve immune checkpoint blockade therapy. Frontiers in Immunology 13:848455

doi: 10.3389/fimmu.2022.848455
[28]

Wan TT, Li XF, Sun YM, Li YB, Su Y. 2015. Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. Biomedecine & Pharmacotherapie 74:145−47

doi: 10.1016/j.biopha.2015.08.002
[29]

Liu Y, Zhang L, Zhang S, Liu J, Li X, et al. 2023. ATF5 regulates tubulointerstitial injury in diabetic kidney disease via mitochondrial unfolded protein response. Molecular Medicine 29:57

doi: 10.1186/s10020-023-00651-4
[30]

Komatsu H. 2021. Discovery of the first druggable GPR52 antagonist to treat Huntington's disease. Journal of Medicinal Chemistry 64:938−40

doi: 10.1021/acs.jmedchem.0c02235
[31]

Poulter S, Austin N, Armstrong R, Barnes M, Bucknell SJ, et al. 2023. The identification of GPR52 agonist HTL0041178, a potential therapy for schizophrenia and related psychiatric disorders. ACS Medicinal Chemistry Letters 14:499−505

doi: 10.1021/acsmedchemlett.3c00052
[32]

Ali S, Wang P, Murphy RE, Allen JA, Zhou J. 2024. Orphan GPR52 as an emerging neurotherapeutic target. Drug Discovery Today 29:103922

doi: 10.1016/j.drudis.2024.103922
[33]

Zhang Y, Wang W, Yang A. 2022. The involvement of ACO3 protein in diabetic retinopathy through the PI3k/Akt signaling pathway. Advances in Clinical and Experimental Medicine 31:407−16

doi: 10.17219/acem/121930
[34]

Xian Y, Wang X, Yu Y, Chen X. 2024. The mechanism of EGFL7 regulating neovascularization in diabetic retinopathy through the PI3K/AKT/VEGFA pathway. Life Sciences 340:122483

doi: 10.1016/j.lfs.2024.122483
[35]

Jiang Y, Thakran S, Bheemreddy R, Ye EA, He H, et al. 2014. Pioglitazone normalizes insulin signaling in the diabetic rat retina through reduction in tumor necrosis factor α and suppressor of cytokine signaling 3. Journal of Biological Chemistry 289:26395−405

doi: 10.1074/jbc.M114.583880
[36]

Mariniello K, Min Y, Ghebremeskel K. 2019. Phosphorylation of protein kinase B, the key enzyme in insulin-signaling cascade, is enhanced in linoleic and arachidonic acid-treated HT29 and HepG2 cells. Nutrition 57:52−58

doi: 10.1016/j.nut.2018.05.033
[37]

Kovoor E, Chauhan SK, Hajrasouliha A. 2022. Role of inflammatory cells in pathophysiology and management of diabetic retinopathy. Survey of Ophthalmology 67:1563−73

doi: 10.1016/j.survophthal.2022.07.008
[38]

Wada M, Yukawa K, Ogasawara H, Suzawa K, Maekawa T, et al. 2021. GPR52 accelerates fatty acid biosynthesis in a ligand-dependent manner in hepatocytes and in response to excessive fat intake in mice. iScience 24:102260

doi: 10.1016/j.isci.2021.102260
[39]

Li S, Xia W, Sun B, Peng W, Yang D, et al. 2024. The stability of FKBP9 maintained by BiP is crucial for glioma progression. Genes & Diseases 11:101123

doi: 10.1016/j.gendis.2023.101123
[40]

Bayan N, Yazdanpanah N, Rezaei N. 2022. Role of toll-like receptor 4 in diabetic retinopathy. Pharmacological Research 175:105960

doi: 10.1016/j.phrs.2021.105960
[41]

Song Y, Lv P, Yu J. 2024. Platycodin D inhibits diabetic retinopathy via suppressing TLR4/MyD88/NF-κB signaling pathway and activating Nrf2/HO-1 signaling pathway. Chemical Biology & Drug Design 103:e14419

doi: 10.1111/cbdd.14419
[42]

Zhou J, Chen B. 2023. Retinal cell damage in diabetic retinopathy. Cells 12:1342

doi: 10.3390/cells12091342
[43]

Rozanska O, Uruska A, Zozulinska-Ziolkiewicz D. 2020. Brain-derived neurotrophic factor and diabetes. International Journal of Molecular Sciences 21:841

doi: 10.3390/ijms21030841
[44]

Lei XW, Li Q, Zhang JZ, Zhang YM, Liu Y, et al. 2019. The protective roles of folic acid in preventing diabetic retinopathy are potentially associated with suppressions on angiogenesis, inflammation, and oxidative stress. Ophthalmic Research 62:80−92

doi: 10.1159/000499020
[45]

Gu J, Lei C, Zhang M. 2023. Folate and retinal vascular diseases. BMC Ophthalmology 23:413

doi: 10.1186/s12886-023-03149-z
[46]

Handgraaf S, Dusaulcy R, Visentin F, Philippe J, Gosmain Y. 2020. Let-7e-5p regulates GLP-1 content and basal release from enteroendocrine L cells from DIO male mice. Endocrinology 161:bqz037

doi: 10.1210/endocr/bqz037
[47]

Liu Q, Jing D, Li Y, Yao B, Zhang H, et al. 2024. Hsa-miR-3928-3p targets the CCL3/CCR5 axis to induce amniotic epithelial cell senescence involved in labor initiation. Placenta 156:98−107

doi: 10.1016/j.placenta.2024.09.008
[48]

Urbančič M, Kloboves Prevodnik V, Petrovič D, Globočnik Petrovič M. 2013. A flow cytometric analysis of vitreous inflammatory cells in patients with proliferative diabetic retinopathy. BioMed Research International 2013:251528

doi: 10.1155/2013/251528
[49]

Urbančič M, Petrovič D, Živin AM, Korošec P, Fležar M, et al. 2020. Correlations between vitreous cytokine levels and inflammatory cells in fibrovascular membranes of patients with proliferative diabetic retinopathy. Molecular Vision 26:472−82

[50]

Kinuthia UM, Wolf A, Langmann T. 2020. Microglia and inflammatory responses in diabetic retinopathy. Frontiers in Immunology 11:564077

doi: 10.3389/fimmu.2020.564077
[51]

Zeng Y, Cao D, Yu H, Hu Y, He M, et al. 2019. Comprehensive analysis of vitreous humor chemokines in type 2 diabetic patients with and without diabetic retinopathy. Acta Diabetologica 56:797−805

doi: 10.1007/s00592-019-01317-6
[52]

Sabetkam S, Kalarestaghi H, Mazloumi Z, Dizaji Asl K, Norouzi N, et al. 2023. The dysfunction of natural killer cells is essential for the development of type 1 diabetes. Pathology - Research and Practice 247:154556

doi: 10.1016/j.prp.2023.154556
[53]

Kim JH, Park K, Lee SB, Kang S, Park JS, et al. 2019. Relationship between natural killer cell activity and glucose control in patients with type 2 diabetes and prediabetes. Journal of Diabetes Investigation 10:1223−28

doi: 10.1111/jdi.13002
[54]

Tokunaga R, Zhang W, Naseem M, Puccini A, Berger MD, et al. 2018. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation − a target for novel cancer therapy. Cancer Treatment Reviews 63:40−47

doi: 10.1016/j.ctrv.2017.11.007
[55]

Nawaz MI, Van Raemdonck K, Mohammad G, Kangave D, Van Damme J, et al. 2013. Autocrine CCL2, CXCL4, CXCL9 and CXCL10 signal in retinal endothelial cells and are enhanced in diabetic retinopathy. Experimental Eye Research 109:67−76

doi: 10.1016/j.exer.2013.01.008