[1]

Liang Y, Yang L, Tang C, Yang Y, Liang S, et al. 2025. Broad-spectrum capture of hundreds of per- and polyfluoroalkyl substances from fluorochemical wastewater. Nature Communications 16:1972

doi: 10.1038/s41467-025-57272-0
[2]

Ateia M, Scheringer M. 2024. From "forever chemicals" to fluorine-free alternatives. Science 385:256−258

doi: 10.1126/science.ado5019
[3]

Gaines LGT. 2023. Historical and current usage of per- and polyfluoroalkyl substances (PFAS): a literature review. American Journal of Industrial Medicine 66:353−378

doi: 10.1002/ajim.23362
[4]

Hou K, Zhu G, Feng Y, Liu Y, Quan X. 2024. Enhanced electrochemical oxidation of perfluorooctanoic acid on Ti/SnO2-Sb electrode by surface morphology regulation. Chinese Chemical Letters 35:108704

doi: 10.1016/j.cclet.2023.108704
[5]

Evich MG, Davis MJB, McCord JP, Acrey B, Awkerman JA, et al. 2022. Per- and polyfluoroalkyl substances in the environment. Science 375:eabg9065.

doi: 10.1126/science.abg9065
[6]

Jensen CR, Genereux DP, Solomon DK, Knappe DRU, Gilmore TE. 2024. Forecasting and hindcasting PFAS concentrations in groundwater discharging to streams near a PFAS production facility. Environmental Science & Technology 58(40):17926−17936

doi: 10.1021/acs.est.4c06697
[7]

Sadia M, Nollen I, Helmus R, ter Laak TL, Béen F, et al. 2023. Occurrence, fate, and related health risks of PFAS in raw and produced drinking water. Environmental Science & Technology 57(8):3062−3074

doi: 10.1021/acs.est.2c06015
[8]

Chow SJ, Ojeda N, Jacangelo JG, Schwab KJ. 2021. Detection of ultrashort-chain and other per- and polyfluoroalkyl substances (PFAS) in U. S. bottled water. Water Research 201:117292

doi: 10.1016/j.watres.2021.117292
[9]

Ruyle BJ, Pennoyer EH, Vojta S, Becanova J, Islam M, et al. 2025. High organofluorine concentrations in municipal wastewater affect downstream drinking water supplies for millions of Americans. Proceedings of the National Academy of Sciences of the United States of America 122(3):e2417156122

doi: 10.1073/pnas.2417156122
[10]

Paris-Davila T, Gaines LGT, Lucas K, Nylander-French LA. 2023. Occupational exposures to airborne per- and polyfluoroalkyl substances (PFAS)-a review. American Journal of Industrial Medicine 66:393−410

doi: 10.1002/ajim.23461
[11]

Morales-McDevitt ME, Dunn M, Habib A, Vojta S, Becanova J, et al. 2022. Poly- and perfluorinated alkyl substances in air and water from dhaka, bangladesh. Environmental Toxicology and Chemistry 41:334−342

doi: 10.1002/etc.5255
[12]

Zhao M, Yao Y, Dong X, Baqar M, Fang B, et al. 2023. Nontarget identification of novel per- and polyfluoroalkyl substances (PFAS) in soils from an oil refinery in southwestern china: a combined approach with TOP assay. Environmental Science & Technology 57:20194−20205

doi: 10.1021/acs.est.3c05859
[13]

Tonelli F, Masiero C, Aresi C, Torriani C, Villani S, et al. 2025. Bone cell differentiation and mineralization in wild-type and osteogenesis imperfecta zebrafish are compromised by per- and poly-fluoroalkyl substances (PFAS). Scientific Reports 15:2295

doi: 10.1038/s41598-025-85967-3
[14]

Taibl KR, Dunlop AL, Barr DB, Li YY, Eick SM, et al. 2023. Newborn metabolomic signatures of maternal per- and polyfluoroalkyl substance exposure and reduced length of gestation. Nature Communications 14:3120

doi: 10.1038/s41467-023-38710-3
[15]

Bolan N, Sarkar B, Yan Y, Li Q, Wijesekara H, et al. 2021. Remediation of poly- and perfluoroalkyl substances (PFAS) contaminated soils – to mobilize or to immobilize or to degrade? Journal of Hazardous Materials 401:123892

doi: 10.1016/j.jhazmat.2020.123892
[16]

Brase RA, Mullin EJ, Spink DC. 2021. Legacy and emerging per- and polyfluoroalkyl substances: analytical techniques, environmental fate, and health effects. International Journal of Molecular Sciences 22:995

doi: 10.3390/ijms22030995
[17]

Wee SY, Aris AZ. 2023. Revisiting the "forever chemicals" , PFOA and PFOS exposure in drinking water. NPJ Clean Water 6:57

doi: 10.1038/s41545-023-00274-6
[18]

Wang Z, Yang W, Xu M, Li B, Chen M, et al. 2024. Associations between gestational exposure to perfluoroalkyl substances, fetal growth, and the mediation effect of thyroid hormones. Scientific Reports 14:25176

doi: 10.1038/s41598-024-75210-w
[19]

Ryu S, Burchett W, Zhang S, Jia X, Modaresi SMS, et al. 2024. Unbound fractions of PFAS in human and rodent tissues: rat liver a suitable proxy for evaluating emerging PFAS? Environmental Science & Technology 58(33):14641−14650

doi: 10.1021/acs.est.4c04050
[20]

Luo Y, Li X, Li J, Gong X, Wu T, et al. 2024. Prenatal exposure of PFAS in cohorts of pregnant women: identifying the critical windows of vulnerability and health implications. Environmental Science & Technology 58(31):13624−13635

doi: 10.1021/acs.est.4c00453
[21]

Paustenbach D, McCauley K, Siracusa J, Smallets S, Brew D, et al. 2025. United states environmental protection agency's perfluorooctanoic acid, perfluorooctane sulfonic acid, and related per- and polyfluoroalkyl substances 2024 drinking water maximum contaminant level: part 2 – fifteen misconceptions about the health hazards. Critical Reviews in Toxicology 55:368−415

doi: 10.1080/10408444.2024.2446453
[22]

Luo Y, Fu K, Wang D, Luo J. 2025. Nanobubble-driven interfacial interactions of carbon-based adsorbents with legacy PFAS: impact of concentration, pH, and coexisting ions. Environmental Science & Technology 59(13):6900−6914

doi: 10.1021/acs.est.4c14726
[23]

Chaudhary M, Sela-Adler M, Ronen A, Nir O. 2023. Efficient PFOA removal from drinking water by a dual-functional mixed-matrix-composite nanofiltration membrane. NPJ Clean Water 6:77

doi: 10.1038/s41545-023-00286-2
[24]

Editorial Team. 2025. The PFAS treatment evolution. Nature Water 3:633

doi: 10.1038/s44221-025-00458-z
[25]

Qian X, Xu L, Ge X, Liu Z, Fang C, et al. 2024. Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane? Chinese Chemical Letters 35:109218

doi: 10.1016/j.cclet.2023.109218
[26]

Jiang F, Wu M, Zhu Z, Jiang C, Ai Z, et al. 2025. Self-sustaining reduction-oxidation coupling driven by hydrated electrons and reactive bromine species for synergistic PFAS defluorination and bromate detoxification in bromide-rich water under UV/sulfite. Water Research 284:124049

doi: 10.1016/j.watres.2025.124049
[27]

Pocorobba JC, Braiman MS. 2025. Bromine-photosensitized degradation of perfluorooctanoic acid. Scientific Reports 15:22177

doi: 10.1038/s41598-025-06632-3
[28]

Xiao F, Sasi PC, Alinezhad A, Golovko SA, Golovko MY, et al. 2021. Thermal decomposition of anionic, zwitterionic, and cationic polyfluoroalkyl substances in aqueous film-forming foams. Environmental Science & Technology 55:9885−9894

doi: 10.1021/acs.est.1c02125
[29]

Awoyemi OS, Luo Y, Niu J, Naidu R, Fang C. 2024. Ultrasonic degradation of per-and polyfluoroalkyl substances (PFAS), aqueous film-forming foam (AFFF) and foam fractionate (FF). Chemosphere 360:142420

doi: 10.1016/j.chemosphere.2024.142420
[30]

Nau-Hix C, Multari N, Singh RK, Richardson S, Kulkarni P, et al. 2021. Field demonstration of a pilot-scale plasma reactor for the rapid removal of poly- and perfluoroalkyl substances in groundwater. ACS ES& T Water 1:680−687

doi: 10.1021/acsestwater.0c00170
[31]

Tshangana CS, Nhlengethwa ST, Glass S, Denison S, Kuvarega AT, et al. 2025. Technology status to treat PFAS-contaminated water and limiting factors for their effective full-scale application. NPJ Clean Water 8:41

doi: 10.1038/s41545-025-00457-3
[32]

Zeeshan M, Tabraiz S, Hashmi SI, Iqbal A, Dittmann D, et al. 2025. A comprehensive overview on the occurrence and removal of per- and polyfluoroalkyl substances through adsorption and biodegradation. Bioresource Technology Reports 29:102077

doi: 10.1016/j.biteb.2025.102077
[33]

Huang X, Huang J, Wang K, Hao M, Geng M, et al. 2024. Comparison of perfluoroalkyl substance adsorption performance by inorganic and organic silicon modified activated carbon. Water Research 260:121919

doi: 10.1016/j.watres.2024.121919
[34]

Jiang X, Luo Y, Mu S, Meng B, Wang W, et al. 2025. Structure-selectivity relationship of anion exchange resins with different quaternary amine functional groups for highly selective removal of PFAS from chromium-plating wastewater. Water Research 268:122749

doi: 10.1016/j.watres.2024.122749
[35]

Ilić N, Tan K, Mayr F, Hou S, Aumeier BM, et al. 2025. Trace adsorptive removal of PFAS from water by optimizing the UiO-66 MOF interface. Advanced Materials 37:2413120

doi: 10.1002/adma.202413120
[36]

Román Santiago A, Dutta A, Wu JC, Yin S, Lee YW, et al. 2025. Investigating the structure–function relationships of fluorinated interfaces for PFAS capture and electrochemically-mediated release. Advanced Functional Materials 2502317

doi: 10.1002/adfm.202502317
[37]

Nakazawa Y, Kosaka K, Yoshida N, Asami M, Matsui Y. 2023. Long-term removal of perfluoroalkyl substances via activated carbon process for general advanced treatment purposes. Water Research 245:120559

doi: 10.1016/j.watres.2023.120559
[38]

Wang Y, Guo J, Sumita, Shi C, Zhu Q, et al. 2022. A review of recent advances in detection and treatment technology for perfluorinated compounds. Water 14:3919

doi: 10.3390/w14233919
[39]

Reid E, Ma Q, Gan L, He J, Igou T, et al. 2025. Improving the hydrophobicity of powder activated carbon to enhance the adsorption kinetics of per- and polyfluoroalkyl substances. ACS ES&T Water 5:2322−2332

doi: 10.1021/acsestwater.4c01222
[40]

Wu Y, Pei K, Zhou J, Xiong J, Liu Y, et al. 2025. Coconut shell activated carbon engineered for triphasic adsorption and multimechanistic removal of emerging contaminant F-53B. Scientific Reports 15:26141

doi: 10.1038/s41598-025-11051-5
[41]

Meyer EE, Rosenberg KJ, Israelachvili J. 2006. Recent progress in understanding hydrophobic interactions. Proceedings of the National Academy of Sciences of the United States of America 103:15739−15746

doi: 10.1073/pnas.0606422103
[42]

Boyer TH, Fang Y, Ellis A, Dietz R, Choi YJ, et al. 2021. Anion exchange resin removal of per- and polyfluoroalkyl substances (PFAS) from impacted water: a critical review. Water Research 200:117244

doi: 10.1016/j.watres.2021.117244
[43]

Fu K, Huang J, Luo F, Fang Z, Yu D, et al. 2024. Understanding the selective removal of perfluoroalkyl and polyfluoroalkyl substances via fluorine–fluorine interactions: a critical review. Environmental Science & Technology 58:16669−16689

doi: 10.1021/acs.est.4c06519
[44]

Yang Z, Zhu Y, Tan X, Gunjal SJJ, Dewapriya P, et al. 2024. Fluoropolymer sorbent for efficient and selective capturing of per- and polyfluorinated compounds. Nature Communications 15:8269

doi: 10.1038/s41467-024-52690-y
[45]

Román Santiago A, Yin S, Elbert J, Lee J, Shukla D, et al. 2023. Imparting selective fluorophilic interactions in redox copolymers for the electrochemically mediated capture of short-chain perfluoroalkyl substances. Journal of the American Chemical Society 145:9508−9519

doi: 10.1021/jacs.2c10963
[46]

Pezoulas ER, Tajdini B, Ko Y, Uliana AA, Giovine R, et al. 2025. Functionalized porous polymer networks as high-performance PFAS adsorbents. Journal of the American Chemical Society 147:21832−21843

doi: 10.1021/jacs.5c04689
[47]

Meegoda JN, Kewalramani JA, Li B, Marsh RW. 2020. A review of the applications, environmental release, and remediation technologies of per- and polyfluoroalkyl substances. International Journal of Environmental Research and Public Health 17:8117

doi: 10.3390/ijerph17218117
[48]

Sanzana S, Fenti A, Iovino P, Panico A. 2025. A review of PFAS remediation: separation and degradation technologies for water and wastewater treatment. Journal of Water Process Engineering 74:107793

doi: 10.1016/j.jwpe.2025.107793
[49]

Lu X, Wang L, Zhu X, Wei J, Wu D, et al. 2025. Customizing membrane microstructures for targeted removal of per- and polyfluoroalkyl substances for healthy drinking water. Journal of Membrane Science 717:123627

doi: 10.1016/j.memsci.2024.123627
[50]

Mahofa E, El Meragawi S, Vilayatteri MA, Dwivedi S, Panda MR, et al. 2025. Manipulating intrapore energy barriers in graphene oxide nanochannels for targeted removal of short-chain PFAS. ACS Nano 19:14742−14755

doi: 10.1021/acsnano.4c15413
[51]

Lee J, Kim D, Kim S, Im S, Lee CK, et al. 2025. Comprehensive evaluation of a pilot-scale semiconductor wastewater reuse process using ultrafiltration and two-stage reverse osmosis for securing intake water resource in ultrapure water production. Desalination 613:119115

doi: 10.1016/j.desal.2025.119115
[52]

Choe HS, Kim KY, Oh JE, Kim JH. 2022. Parallel study on removal efficiency of pharmaceuticals and PFASs in advanced water treatment processes: ozonation, GAC adsorption, and RO processes. Environmental Engineering Research 27:200509−200500

doi: 10.4491/eer.2020.509
[53]

Ma Q, Zhang J, Zhu G, Ahuja N, Khusid B, et al. 2024. Effects of surfactants, ion valency and solution temperature on PFAS rejection in commercial reverse osmosis (RO) and nanofiltration (NF) processes. Journal of Water Process Engineering 66:106039

doi: 10.1016/j.jwpe.2024.106039
[54]

Zhang B, Li J, Wang X, Zhang C, Yin W, et al. 2025. Improved ultrafiltration performance through dielectric barrier discharge/sulfite pretreatment: effects of water matrices and mechanistic insights. Water Research 268:122755

doi: 10.1016/j.watres.2024.122755
[55]

Ying Shi C, Chen G, Dumée LF. 2024. Perfluoroalkyl substances concentration from groundwater via direct contact membrane distillation. NPJ Clean Water 7:115

doi: 10.1038/s41545-024-00414-6
[56]

Sharma S, Shetti NP, Basu S, Nadagouda MN, Aminabhavi TM. 2022. Remediation of per- and polyfluoroalkyls (PFAS) via electrochemical methods. Chemical Engineering Journal 430:132895

doi: 10.1016/j.cej.2021.132895
[57]

Zeng Y, Luo Y, He Y, Zhang K, Zhu B, et al. 2025. Photo-assisted electrocatalysis with bimetallic PdCu/TiOx catalysts: enhancing denitrification and economic viability. Chinese Chemical Letters 36:110514

doi: 10.1016/j.cclet.2024.110514
[58]

Yin S, Calvillo Solís JJ, Sandoval-Pauker C, Puerto-Diaz D, Villagrán D. 2025. Advances in PFAS electrochemical reduction: mechanisms, materials, and future perspectives. Journal of Hazardous Materials 491:137943

doi: 10.1016/j.jhazmat.2025.137943
[59]

Calvillo Solís JJ, Sandoval-Pauker C, Bai D, Yin S, Senftle TP, et al. 2024. Electrochemical reduction of perfluorooctanoic acid (PFOA): an experimental and theoretical approach. Journal of the American Chemical Society 146:10687−10698

doi: 10.1021/jacs.4c00443
[60]

Wang Y, Xiao Y, Wang Y, Lin Q, Zhu Y, et al. 2023. Electroreductive defluorination of unsaturated PFAS by a quaternary ammonium surfactant-modified cathode via direct cathodic reduction. Environmental Science & Technology 57:7578−7589

doi: 10.1021/acs.est.2c08182
[61]

Fang Y, Meng P, Schaefer C, Knappe DRU. 2023. Removal and destruction of perfluoroalkyl ether carboxylic acids (PFECAs) in an anion exchange resin and electrochemical oxidation treatment train. Water Research 230:119522

doi: 10.1016/j.watres.2022.119522
[62]

Song D, Qiao B, Wang X, Zhao L, Li X, et al. 2023. Degradation of perfluorooctanoic acid by chlorine radical triggered electrochemical oxidation system. Environmental Science & Technology 57:9416−9425

doi: 10.1021/acs.est.3c02025
[63]

Kim N, Elbert J, Shchukina E, Su X. 2024. Integrating redox-electrodialysis and electrosorption for the removal of ultra-short- to long-chain PFAS. Nature Communications 15:8321

doi: 10.1038/s41467-024-52630-w
[64]

Tan BT-W, Abu Bakar NHH, Lee HL. 2025. Electrochemical methods for treatment of per- and polyfluoroalkyl substances (PFAS): a review. Journal of Environmental Chemical Engineering 13:114990

doi: 10.1016/j.jece.2024.114990
[65]

Niu J, Wang C, Shang E. 2017. Removal of perfluorinated compounds from wastewaters by electrochemical methods: a general review. SCIENTIA SINICA Technologica 47:1233−1255

doi: 10.1360/N092017-00116
[66]

Lin H, Niu J, Xu J, Huang H, Li D, et al. 2013. Highly efficient and mild electrochemical mineralization of long-chain perfluorocarboxylic acids (C9–C10) by Ti/SnO2–Sb–Ce, Ti/SnO2–Sb/Ce–PbO2, and Ti/BDD Electrodes. Environmental Science & Technology 47:13039−13046

doi: 10.1021/es4034414
[67]

Gomez-Ruiz B, Diban N, Urtiaga A. 2019. Comparison of microcrystalline and ultrananocrystalline boron doped diamond anodes: influence on perfluorooctanoic acid electrolysis. Separation and Purification Technology 208:169−177

doi: 10.1016/j.seppur.2018.03.044
[68]

Xu X, Li Y, Vo PHN, Shukla P, Ge L, et al. 2024. Electrochemical advanced oxidation of per- and polyfluoroalkyl substances (PFASs): development, challenges and perspectives. Chemical Engineering Journal 500:157222

doi: 10.1016/j.cej.2024.157222
[69]

Duinslaeger N, Radjenovic J. 2022. Electrochemical degradation of per- and polyfluoroalkyl substances (PFAS) using low-cost graphene sponge electrodes. Water Research 213:118148

doi: 10.1016/j.watres.2022.118148
[70]

Guan Y, Liu Z, Yang N, Yang S, Quispe-Cardenas LE, et al. 2024. Near-complete destruction of PFAS in aqueous film-forming foam by integrated photo-electrochemical processes. Nature Water 2:443−452

doi: 10.1038/s44221-024-00232-7
[71]

Zhang X, Li H, Zhang T, Li Z, Sun W, et al. 2024. Degradation of per- and polyfluoroalkyl substances in water by UV-based advanced oxidation or advanced reduction processes. Chemical Industry and Engineering Progress 43:4587−4600

doi: 10.16085/j.issn.1000-6613.2023-1013
[72]

Liu L, Deng S, Bao Y, Huang J, Yu G. 2022. Degradation of OBS (Sodium p-perfluorous nonenoxybenzenesulfonate) as a novel per- and polyfluoroalkyl substance by UV/persulfate and UV/sulfite: fluorinated intermediates and treatability in fluoroprotein foam. Environmental Science & Technology 56:6201−6211

doi: 10.1021/acs.est.1c03210
[73]

Gu M, Ge Y, Yu G, Huang J. 2025. Degradation of novel PFOA alternatives in fluoropolymer production by UV activated persulfate: efficiency, mechanism and structural effects. Journal of Hazardous Materials 492:138121

doi: 10.1016/j.jhazmat.2025.138121
[74]

Tan S, Wang R, Wang K, Yang Z, Chen Y, et al. 2025. Unravelling the structure-dependent defluorination mechanisms of per- and polyfluoroalkyl substances by hydrated electrons in UV/sulfite. Nature Water 3:734−745

doi: 10.1038/s44221-025-00449-0
[75]

Feng Z, Fu Y, Li J, Lu X, Wang S, et al. 2025. Deep insight of the mechanism for nitrate-promoted PFASs defluorination in UV/sulfite ARP: activation of the decarboxylation–hydroxylation–elimination–hydrolysis degradation pathway. Environmental Science & Technology 59:10087−10097

doi: 10.1021/acs.est.4c14559
[76]

Kim T, Eom S, Kim MK, Zoh KD. 2025. Degradation and defluorination of C6F13 PFASs with different functional groups by VUV/UV-based reduction and oxidation processes. Journal of Hazardous Materials 488:137216

doi: 10.1016/j.jhazmat.2025.137216
[77]

Qi Y, Yang Y, Cui S, Tang X, Zhang P, et al. 2024. Novel defluorination pathways of Perfluoroether compounds (GenX): α-Fe2O3 nanoparticle layer retains higher concentrations of effective hydrated electrons. Environmental Science & Technology 58:5567−5577

doi: 10.1021/acs.est.3c09879
[78]

Tabatabaei M, Cho DW, Fahad S, Jeong DW, Hwang JH. 2025. Photocatalytic innovations in PFAS removal: emerging trends and advances. Science of The Total Environment 980:179567

doi: 10.1016/j.scitotenv.2025.179567
[79]

Wen Y, Rentería-Gómez Á, Day GS, Smith MF, Yan TH, et al. 2022. Integrated photocatalytic reduction and oxidation of perfluorooctanoic acid by metal–organic frameworks: key insights into the degradation mechanisms. Journal of the American Chemical Society 144:11840−11850

doi: 10.1021/jacs.2c04341
[80]

Arima Y, Okayasu Y, Yoshioka D, Nagai Y, Kobayashi Y. 2024. Multiphoton-driven photocatalytic defluorination of persistent perfluoroalkyl substances and polymers by visible light. Angewandte Chemie International Edition 63:e202408687

doi: 10.1002/anie.202408687
[81]

Zhao D, Tang X, Liu P, Huang Q, Li T, et al. 2024. Recent progress of ion-modified TiO2 for enhanced photocatalytic hydrogen production. Molecules 29:2347

doi: 10.3390/molecules29102347
[82]

Chowdhury N, Choi H. 2023. Photocatalytic degradation of perfluorooctanoic acid on Pb-doped TiO2 coated with reduced graphene oxide. Water Environment Research 95:e10871

doi: 10.1002/wer.10871
[83]

Kim G, Choi W. 2010. Charge-transfer surface complex of EDTA-TiO2 and its effect on photocatalysis under visible light. Applied Catalysis B: Environmental 100:77−83

doi: 10.1016/j.apcatb.2010.07.014
[84]

Wang Y, Zhang P. 2011. Photocatalytic decomposition of perfluorooctanoic acid (PFOA) by TiO2 in the presence of oxalic acid. Journal of Hazardous Materials 192:1869−1875

doi: 10.1016/j.jhazmat.2011.07.026
[85]

Shah BR, Patel UD. 2021. Mechanistic aspects of photocatalytic degradation of Lindane by TiO2 in the presence of oxalic acid and EDTA as hole-scavengers. Journal of Environmental Chemical Engineering 9:105458

doi: 10.1016/j.jece.2021.105458
[86]

Zhu Y, Ji H, He K, Blaney L, Xu T, et al. 2022. Photocatalytic degradation of GenX in water using a new adsorptive photocatalyst. Water Research 220:118650

doi: 10.1016/j.watres.2022.118650
[87]

Zhang H, Chen JX, Qu JP, Kang YB. 2024. Photocatalytic low-temperature defluorination of PFASs. Nature 635:610−617

doi: 10.1038/s41586-024-08179-1
[88]

Wang J, Lin Z, He X, Song M, Westerhoff P, et al. 2022. Critical review of thermal decomposition of per- and polyfluoroalkyl substances: mechanisms and implications for thermal treatment processes. Environmental Science & Technology 56:5355−5370

doi: 10.1021/acs.est.2c02251
[89]

Alinezhad A, Shao H, Litvanova K, Sun R, Kubatova A, et al. 2023. Mechanistic investigations of thermal decomposition of perfluoroalkyl ether carboxylic acids and short-chain perfluoroalkyl carboxylic acids. Environmental Science & Technology 57:8796−8807

doi: 10.1021/acs.est.3c00294
[90]

Wang J, Chen K, Jin B, Woo W, Lum M, et al. 2024. Pyrolysis of two perfluoroalkanesulfonates (PFSAs) and PFSA-laden granular activated carbon (GAC): decomposition mechanisms and the role of GAC. Environmental Science & Technology 58:21850−21860

doi: 10.1021/acs.est.4c06805
[91]

Sun R, Alinezhad A, Altarawneh M, Ateia M, Blotevogel J, et al. 2024. New insights into thermal degradation products of long-chain per- and polyfluoroalkyl substances (PFAS) and their mineralization enhancement using additives. Environmental Science & Technology 58:22417−22430

doi: 10.1021/acs.est.4c05782
[92]

Tran LN, Lum M, Tian L, Liu J, Lin YH. 2024. The influence of functional groups on the pyrolysis of per- and polyfluoroalkyl substances. Journal of Analytical and Applied Pyrolysis 183:106820

doi: 10.1016/j.jaap.2024.106820
[93]

Hoffmann MR, Hua I, Höchemer R. 1996. Application of ultrasonic irradiation for the degradation of chemical contaminants in water. Ultrasonics Sonochemistry 3:S163−S172

doi: 10.1016/S1350-4177(96)00022-3
[94]

Meegoda JN, Bezerra de Souza B, Casarini MM, Kewalramani JA. 2022. A review of PFAS destruction technologies. International Journal of Environmental Research and Public Health 19:16397

doi: 10.3390/ijerph192416397
[95]

Ilić N, Andalib A, Lippert T, Knoop O, Franke M, et al. 2023. Ultrasonic degradation of GenX (HFPO-DA) – performance comparison to PFOA and PFOS at high frequencies. Chemical Engineering Journal 472:144630

doi: 10.1016/j.cej.2023.144630
[96]

Merino N, Qu Y, Deeb RA, Hawley EL, Hoffmann MR, et al. 2016. Degradation and removal methods for perfluoroalkyl and polyfluoroalkyl substances in water. Environmental Engineering Science 33:615−649

doi: 10.1089/ees.2016.0233
[97]

Cheng J, Vecitis CD, Park H, Mader BT, Hoffmann MR. 2010. Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in groundwater: kinetic effects of matrix inorganics. Environmental Science & Technology 44:445−450

doi: 10.1021/es902651g
[98]

Cheng J, Vecitis CD, Park H, Mader BT, Hoffmann MR. 2008. Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater: environmental matrix effects. Environmental Science & Technology 42:8057−8063

doi: 10.1021/es8013858
[99]

Lei Y, Zhao L, Fang C, Naidu R, Tian D, et al. 2023. A novel enhanced defluorination of perfluorooctanoic acids by surfactant-assisted ultrasound coupling persulfate. Separation and Purification Technology 317:123906

doi: 10.1016/j.seppur.2023.123906
[100]

Xiong X, Shang Y, Bai L, Luo S, Seviour TW, et al. 2023. Complete defluorination of perfluorooctanoic acid (PFOA) by ultrasonic pyrolysis towards zero fluoro-pollution. Water Research 235:119829

doi: 10.1016/j.watres.2023.119829
[101]

Yao S, Lin J, He S, Bai Y, Jin M, et al. 2025. Highly efficient degradation of perfluoroalkyl substances (PFAS) by a novel polytetrafluoroetylene piezocatalyst. Journal of Hazardous Materials 488:137317

doi: 10.1016/j.jhazmat.2025.137317
[102]

Singh RK, Fernando S, Baygi SF, Multari N, Thagard SM, et al. 2019. Breakdown products from perfluorinated alkyl substances (PFAS) degradation in a plasma-based water treatment process. Environmental Science & Technology 53:2731−2738

doi: 10.1021/acs.est.8b07031
[103]

Chen C, Ma C, Yang X, Gromov M, Tian Y, et al. 2024. Degradation of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in water by use of a nonthermal plasma-ozonation cascade reactor: role of different processes and reactive species. Chemical Engineering Journal 486:150218

doi: 10.1016/j.cej.2024.150218
[104]

Isowamwen O, Li R, Holsen T, Thagard SM. 2023. Plasma-assisted degradation of a short-chain perfluoroalkyl substance (PFAS): Perfluorobutane sulfonate (PFBS). Journal of Hazardous Materials 456:131691

doi: 10.1016/j.jhazmat.2023.131691
[105]

Song C, Zhao Y, Liu Z, Zhang Y, Lai J, et al. 2025. Plasma-generated free electrons induced perfluorooctanoic acid efficient degradation at the gas–liquid interface. Environmental Science & Technology 59:9332−9343

doi: 10.1021/acs.est.5c02062
[106]

Li R, Isowamwen OF, Ross KC, Holsen TM, Thagard SM. 2023. PFAS–CTAB complexation and its role on the removal of PFAS from a lab-prepared water and a reverse osmosis reject water using a plasma reactor. Environmental Science & Technology 57:12901−12910

doi: 10.1021/acs.est.3c03679