[1]

Li W, Wufuer R, Duo J, Wang S, Luo Y, et al. 2020. Microplastics in agricultural soils: Extraction and characterization after different periods of polythene film mulching in an arid region. Science of the Total Environment 749:141420

doi: 10.1016/j.scitotenv.2020.141420
[2]

Jia W, Karapetrova A, Zhang M, Xu L, Li K, et al. 2022. Automated identification and quantification of invisible microplastics in agricultural soils. Science of the Total Environment 844:156853

doi: 10.1016/j.scitotenv.2022.156853
[3]

Zhang Y, Peng Y, Peng C, Wang P, Lu Y, et al. 2021. Comparison of detection methods of microplastics in landfill mineralized refuse and selection of degradation degree indexes. Environmental Science & Technology 55:13802−13811

doi: 10.1021/acs.est.1c02772
[4]

Li Y, Zhang J, Xu L, Li R, Zhang R, et al. 2025. Leaf absorption contributes to accumulation of microplastics in plants. Nature 641:666−673

doi: 10.1038/s41586-025-08831-4
[5]

Zhou W, Xu J, Fu B, Wu Y, Zhang K, et al. 2024. Microplastic accumulation and transport in agricultural soils with long-term sewage sludge amendments. Journal of Hazardous Materials 480:136263

doi: 10.1016/j.jhazmat.2024.136263
[6]

Zhang L, Xie Y, Liu J, Zhong S, Qian Y, et al. 2020. An overlooked entry pathway of microplastics into agricultural soils from application of sludge-based fertilizers. Environmental Science & Technology 54:4248−4255

doi: 10.1021/acs.est.9b07905
[7]

Weithmann N, Möller JN, Löder MGJ, Piehl S, Laforsch C, et al. 2018. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Science Advances 4:eaap8060

doi: 10.1126/sciadv.aap8060
[8]

Bergmann M, Mützel S, Primpke S, Tekman MB, Trachsel J, et al. 2019. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Science Advances 5:eaax1157

doi: 10.1126/sciadv.aax1157
[9]

Brahney J, Hallerud M, Heim E, Hahnenberger M, Sukumaran S. 2020. Plastic rain in protected areas of the United States. Science 368:1257−1260

doi: 10.1126/science.aaz5819
[10]

Chen Q, Shi G, Revell LE, Zhang J, Zuo C, et al. 2023. Long-range atmospheric transport of microplastics across the southern hemisphere. Nature Communications 14:7898

doi: 10.1038/s41467-023-43695-0
[11]

Courtene-Jones W, De Falco F, Burgevin F, Handy RD, Thompson RC. 2024. Are biobased microfibers less harmful than conventional plastic microfibers: evidence from earthworms. Environmental Science & Technology 58:20366−20377

doi: 10.1021/acs.est.4c05856
[12]

Jiang X, Yang Y, Wang Q, Liu N, Li M. 2022. Seasonal variations and feedback from microplastics and cadmium on soil organisms in agricultural fields. Environment International 161:107096

doi: 10.1016/j.envint.2022.107096
[13]

Zhu D, Ma J, Li G, Rillig MC, Zhu Y-G. 2022. Soil plastispheres as hotspots of antibiotic resistance genes and potential pathogens. The ISME Journal 16:521−532

doi: 10.1038/s41396-021-01103-9
[14]

Zhu F, Yan Y, Doyle E, Zhu C, Jin X, et al. 2022. Microplastics altered soil microbiome and nitrogen cycling: The role of phthalate plasticizer. Journal of Hazardous Materials 427:127944

doi: 10.1016/j.jhazmat.2021.127944
[15]

Zhang X, Li Y, Lei J, Li Z, Tan Q, et al. 2023. Time-dependent effects of microplastics on soil bacteriome. Journal of Hazardous Materials 447:130762

doi: 10.1016/j.jhazmat.2023.130762
[16]

Basumatary T, Biswas D, Boro S, Nava AR, Narayan M, et al. 2025. Dynamics and impacts of microplastics (MPs) and nanoplastics (NPs) on ecosystems and biogeochemical processes: The need for robust regulatory frameworks. ACS Omega 10:17051−17069

doi: 10.1021/acsomega.5c01175
[17]

Wachsman G, Sparks EE, Benfey PN. 2015. Genes and networks regulating root anatomy and architecture. New Phytologist 208:26−38

doi: 10.1111/nph.13469
[18]

Li L, Luo Y, Li R, Zhou Q, Peijnenburg WJGM, et al. 2020. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nature Sustainability 3:929−937

doi: 10.1038/s41893-020-0567-9
[19]

Lian J, Wu J, Xiong H, Zeb A, Yang T, et al. 2020. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L). Journal of Hazardous Materials 385:121620

doi: 10.1016/j.jhazmat.2019.121620
[20]

Li L, Zhou Q, Yin N, Tu C, Luo Y. 2019. Uptake and accumulation of microplastics in an edible plant. Chinese Science Bulletin 64:928−934

doi: 10.1360/N972018-00845
[21]

Liu L, Xu K, Zhang B, Ye Y, Zhang Q, et al. 2021. Cellular internalization and release of polystyrene microplastics and nanoplastics. Science of The Total Environment 779:146523

doi: 10.1016/j.scitotenv.2021.146523
[22]

Sun XD, Yuan XZ, Jia Y, Feng LJ, Zhu FP, et al. 2020. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nature Nanotechnology 15:755−760

doi: 10.1038/s41565-020-0707-4
[23]

Zhou J, Gui H, Banfield CC, Wen Y, Zang H, et al. 2021. The microplastisphere: Biodegradable microplastics addition alters soil microbial community structure and function. Soil Biology and Biochemistry 156:108211

doi: 10.1016/j.soilbio.2021.108211
[24]

Yu Z, Xu X, Guo L, Jin R, Lu Y. 2024. Uptake and transport of micro/nanoplastics in terrestrial plants: Detection, mechanisms, and influencing factors. Science of The Total Environment 907:168155

doi: 10.1016/j.scitotenv.2023.168155
[25]

Bandmann V, Müller JD, Köhler T, Homann U. 2012. Uptake of fluorescent nano beads into BY2-cells involves clathrin-dependent and clathrin-independent endocytosis. FEBS Letters 586:3626−3632

doi: 10.1016/j.febslet.2012.08.008
[26]

Chae Y, An YJ. 2020. Nanoplastic ingestion induces behavioral disorders in terrestrial snails: trophic transfer effects via vascular plants. Environmental Science: Nano 7:975−983

doi: 10.1039/C9EN01335K
[27]

Li G, Santoni V, Maurel C. 2014. Plant aquaporins: Roles in plant physiology. Biochimica et Biophysica Acta (BBA) - General Subjects 1840:1574−1582

doi: 10.1016/j.bbagen.2013.11.004
[28]

Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, et al. 2015. Aquaporins in Plants. Physiological Reviews 95:1321−1358

doi: 10.1152/physrev.00008.2015
[29]

Khalid N, Aqeel M, Noman A. 2020. Microplastics could be a threat to plants in terrestrial systems directly or indirectly. Environmental Pollution 267:115653

doi: 10.1016/j.envpol.2020.115653
[30]

Zhou CQ, Lu CH, Mai L, Bao LJ, Liu LY, et al. 2021. Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage. Journal of Hazardous Materials 401:123412

doi: 10.1016/j.jhazmat.2020.123412
[31]

Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, et al. 2009. Understanding biophysicochemical interactions at the nano–bio interface. Nature Materials 8:543−557

doi: 10.1038/nmat2442
[32]

Wang CX, Wang L, Thomas CR. 2004. Modelling the mechanical properties of single suspension-cultured tomato cells. Annals of Botany 93:443−453

doi: 10.1093/aob/mch062
[33]

Jiang X, Chen H, Liao Y, Ye Z, Li M, et al. 2019. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environmental Pollution 250:831−838

doi: 10.1016/j.envpol.2019.04.055
[34]

de Souza Machado AA, Lau CW, Kloas W, Bergmann J, Bachelier JB, et al. 2019. Microplastics can change soil properties and affect plant performance. Environmental Science & Technology 53:6044−6052

doi: 10.1021/acs.est.9b01339
[35]

Tumwet FC, Richter A, Kleint T, Scheytt T. 2024. Vertical movement of microplastics by roots of wheat plant (Triticum aestivum) and the plant response in sandy soil. Microplastics and Nanoplastics 4:15

doi: 10.1186/s43591-024-00092-8
[36]

Zytowski E, Mollavali M, Baldermann S. 2025. Uptake and translocation of nanoplastics in mono and dicot vegetables. Plant, Cell & Environment 48:134−148

doi: 10.1111/pce.15115
[37]

Jamil A, Ahmad A, Moeen-ud-din M, Zhang Y, Zhao Y, et al. 2025. Unveiling the mechanism of micro-and-nano plastic phytotoxicity on terrestrial plants: a comprehensive review of omics approaches. Environment International 195:109257

doi: 10.1016/j.envint.2025.109257
[38]

Robbins NE, Trontin C, Duan L, Dinneny JR. 2014. Beyond the barrier: communication in the root through the endodermis. Plant Physiology 166:551−559

doi: 10.1104/pp.114.244871
[39]

Naseer S, Lee Y, Lapierre C, Franke R, Nawrath C, et al. 2012. Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proceedings of the National Academy of Sciences 109:10101−10106

doi: 10.1073/pnas.1205726109
[40]

Liu Y, Xu F, Ding L, Zhang G, Bai B, et al. 2023. Microplastics reduce nitrogen uptake in peanut plants by damaging root cells and impairing soil nitrogen cycling. Journal of Hazardous Materials 443:130384

doi: 10.1016/j.jhazmat.2022.130384
[41]

Xu Z, Zhang Y, Lin L, Wang L, Sun W, et al. 2022. Toxic effects of microplastics in plants depend more by their surface functional groups than just accumulation contents. Science of The Total Environment 833:155097

doi: 10.1016/j.scitotenv.2022.155097
[42]

Liu J, Wang P, Wang Y, Zhang Y, Xu T, et al. 2022. Negative effects of poly(butylene adipate-co-terephthalate) microplastics on Arabidopsis and its root-associated microbiome. Journal of Hazardous Materials 437:129294

doi: 10.1016/j.jhazmat.2022.129294
[43]

Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, et al. 2018. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology 3:470−480

doi: 10.1038/s41564-018-0129-3
[44]

Knott M, Ani M, Kroener E, Diehl D. 2022. Effect of changing chemical environment on physical properties of maize root mucilage. Plant and Soil 478:85−101

doi: 10.1007/s11104-022-05577-0
[45]

Lee EH, Eo JK, Ka KH, Eom AH. 2013. Diversity of arbuscular mycorrhizal fungi and their roles in ecosystems. Mycobiology 41:121−125

doi: 10.5941/MYCO.2013.41.3.121
[46]

Mony C, Vannier N, Burel F, Ernoult A, Vandenkoornhuyse P. 2024. The root microlandscape of arbuscular mycorrhizal fungi. New Phytologist 244:394−406

doi: 10.1111/nph.20048
[47]

Rosling A, Eshghi Sahraei S, Kalsoom Khan F, Desirò A, Bryson AE, et al. 2024. Evolutionary history of arbuscular mycorrhizal fungi and genomic signatures of obligate symbiosis. BMC Genomics 25:529

doi: 10.1186/s12864-024-10391-2
[48]

Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty PE. 2019. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytologist 223:1127−1142

doi: 10.1111/nph.15775
[49]

Kameoka H, Gutjahr C. 2022. Functions of lipids in development and reproduction of arbuscular mycorrhizal fungi. Plant and Cell Physiology 63:1356−1365

doi: 10.1093/pcp/pcac113
[50]

Camuy-Velez L, Chakraborty D, Young A, Paudel S, Elvers R, et al. 2025. Context-dependent contributions of arbuscular mycorrhizal fungi to host performance under global change factors. Soil Biology and Biochemistry 204:109707

doi: 10.1016/j.soilbio.2024.109707
[51]

Li X, Shi F, Zhou M, Wu F, Su H, et al. 2024. Migration and accumulation of microplastics in soil-plant systems mediated by symbiotic microorganisms and their ecological effects. Environment International 191:108965

doi: 10.1016/j.envint.2024.108965
[52]

Zhou J, Zang H, Loeppmann S, Gube M, Kuzyakov Y, et al. 2020. Arbuscular mycorrhiza enhances rhizodeposition and reduces the rhizosphere priming effect on the decomposition of soil organic matter. Soil Biology and Biochemistry 140:107641

doi: 10.1016/j.soilbio.2019.107641
[53]

Li HH, Chen XW, Zhai FH, Li YT, Zhao HM, et al. 2024. Arbuscular mycorrhizal fungus alleviates charged nanoplastic stress in host plants via enhanced defense-related gene expressions and hyphal capture. Environmental Science & Technology 58:6258−6273

doi: 10.1021/acs.est.3c07850
[54]

Zhang H, Cheng H, Twagirayezu G, Zhang F, Shi Y, et al. 2023. Arbuscular mycorrhizal fungi adjusts root architecture to promote leaf nitrogen accumulation and reduce leaf carbon–nitrogen ratio of mulberry seedlings. Forests 14:2448

doi: 10.3390/f14122448
[55]

Kralj K, Chen Z. 2025. Arbuscular mycorrhizal fungi improve treatment performance and vegetative resilience in constructed wetlands exposed to microplastics. Environmental Research 270:121049

doi: 10.1016/j.envres.2025.121049
[56]

Chen H, Zhang X, Wang H, Xing S, Yin R, et al. 2023. Arbuscular mycorrhizal fungi can inhibit the allocation of microplastics from crop roots to aboveground edible parts. Journal of Agricultural and Food Chemistry 71:18323−18332

doi: 10.1021/acs.jafc.3c05570
[57]

Du Y, Yang H, Tang J, Hu L, Chen X. 2025. Arbuscular mycorrhizal fungi affect root morphology locally but not systemically through altering nutrient- and phytohormone-related gene expressions at low soil P level. Plant and Soil 512:1279−1296

doi: 10.1007/s11104-024-07150-3
[58]

Sun H, Lei C, Xu J, Li R. 2021. Foliar uptake and leaf-to-root translocation of nanoplastics with different coating charge in maize plants. Journal of Hazardous Materials 416:125854

doi: 10.1016/j.jhazmat.2021.125854
[59]

Wang Y, Xiang L, Wang F, Wang Z, Bian Y, et al. 2022. Positively charged microplastics induce strong lettuce stress responses from physiological, transcriptomic, and metabolomic perspectives. Environmental Science & Technology 56:16907−16918

doi: 10.1021/acs.est.2c06054
[60]

Eichert T, Goldbach HE. 2008. Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces – further evidence for a stomatal pathway. Physiologia Plantarum 132:491−502

doi: 10.1111/j.1399-3054.2007.01023.x
[61]

Simonetti G, Palocci C, Valletta A, Kolesova O, Chronopoulou L, et al. 2019. Anti-candida biofilm activity of pterostilbene or crude extract from non-fermented grape pomace entrapped in biopolymeric nanoparticles. Molecules 24:2070

doi: 10.3390/molecules24112070
[62]

Lian J, Liu W, Meng L, Wu J, Chao L, et al. 2021. Foliar-applied polystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality of lettuce (Lactuca sativa L.). Environmental Pollution 280:116978

doi: 10.1016/j.envpol.2021.116978
[63]

Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, et al. 2016. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants – Critical review. Nanotoxicology 10:257−278

doi: 10.3109/17435390.2015.1048326
[64]

Xia Y, Zhou JJ, Gong YY, Li ZJ, Zeng EY. 2020. Strong influence of surfactants on virgin hydrophobic microplastics adsorbing ionic organic pollutants. Environmental Pollution 265:115061

doi: 10.1016/j.envpol.2020.115061
[65]

Ishfaq M, Shakoor N, Rillig MC, Geilfus C-M. 2025. Airborne microplastics in leaves and food safety risks. Trends in Plant Science

doi: 10.1016/j.tplants.2025.05.012
[66]

Cao J, Yang Q, Jiang J, Dalu T, Kadushkin A, et al. 2022. Coronas of micro/nano plastics: a key determinant in their risk assessments. Particle and Fibre Toxicology 19:55

doi: 10.1186/s12989-022-00492-9
[67]

Shi X, Chen Z, Wei W, Chen J, Ni BJ. 2023. Toxicity of micro/nanoplastics in the environment: roles of plastisphere and eco-corona. Soil & Environmental Health 1:100002

doi: 10.1016/j.seh.2023.100002
[68]

Ali I, Tan X, Peng C, Naz I, Zhang Y, et al. 2024. Eco- and bio-corona-based microplastics and nanoplastics complexes in the environment: modulations in the toxicological behavior of plastic particles and factors affecting. Process Safety and Environmental Protection 187:356−375

doi: 10.1016/j.psep.2024.04.035
[69]

Zhou J, Xia R. 2024. Leafy vegetable assimilation of atmospheric microplastics/nanoplastics: an overlooked source in human food? Environmental Science & Technology Letters 11:51−53

doi: 10.1021/acs.estlett.3c00887
[70]

Shi R, Liu W, Lian Y, Wang X, Men S, et al. 2024. Toxicity mechanisms of nanoplastics on crop growth, interference of phyllosphere microbes, and evidence for foliar penetration and translocation. Environmental Science & Technology 58:1010−1021

doi: 10.1021/acs.est.3c03649
[71]

Ilyas M, Liu X, Yang J, Xu G. 2024. Foliar implications of polystyrene nanoplastics on leafy vegetables and its ecological consequences. Journal of Hazardous Materials 480:136346

doi: 10.1016/j.jhazmat.2024.136346
[72]

Dong Y, Gao M, Qiu W, Song Z. 2021. Uptake of microplastics by carrots in presence of As (III): Combined toxic effects. Journal of Hazardous Materials 411:125055

doi: 10.1016/j.jhazmat.2021.125055
[73]

Huang D, Chen H, Shen M, Tao J, Chen S, et al. 2022. Recent advances on the transport of microplastics/nanoplastics in abiotic and biotic compartments. Journal of Hazardous Materials 438:129515

doi: 10.1016/j.jhazmat.2022.129515
[74]

Mandal M, Roy A, Sarkar A. 2024. Understanding the possible cellular responses in plants under micro(nano)-plastic (MNPs): Balancing the structural harmony with functions. Science of The Total Environment 957:177732

doi: 10.1016/j.scitotenv.2024.177732
[75]

Campanale C, Galafassi S, Savino I, Massarelli C, Ancona V, et al. 2022. Microplastics pollution in the terrestrial environments: Poorly known diffuse sources and implications for plants. Science of The Total Environment 805:150431

doi: 10.1016/j.scitotenv.2021.150431
[76]

Guo S, Wang J, Sun H, Wu J, Xu J, et al. 2023. Foliar uptake and in-leaf translocation of micro(nano)plastics and their interaction with epicuticular wax. Environmental Science: Nano 10:1126−1137

doi: 10.1039/D2EN00975G
[77]

Li R, Zhang R, Li Y, Liu C, Wang P, et al. 2024. Foliar uptake and distribution of metallic oxide nanoparticles in maize (Zea mays L.) leaf. Environmental Science & Technology 58:16994−17003

doi: 10.1021/acs.est.4c00991
[78]

Iqbal B, Zhao T, Yin W, Zhao X, Xie Q, et al. 2023. Impacts of soil microplastics on crops: A review. Applied Soil Ecology 181:104680

doi: 10.1016/j.apsoil.2022.104680
[79]

Bosker T, Bouwman LJ, Brun NR, Behrens P, Vijver MG. 2019. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 226:774−781

doi: 10.1016/j.chemosphere.2019.03.163
[80]

Wang F, Feng X, Liu Y, Adams CA, Sun Y, et al. 2022. Micro(nano)plastics and terrestrial plants: up-to-date knowledge on uptake, translocation, and phytotoxicity. Resources, Conservation and Recycling 185:106503

doi: 10.1016/j.resconrec.2022.106503
[81]

Zhai Y, Bai J, Chang P, Liu Z, Wang Y, et al. 2024. Microplastics in terrestrial ecosystem: Exploring the menace to the soil-plant-microbe interactions. TrAC Trends in Analytical Chemistry 174:117667

doi: 10.1016/j.trac.2024.117667
[82]

Yu Y, Chen Y, Wang Y, Xue S, Liu M, et al. 2023. Response of soybean and maize roots and soil enzyme activities to biodegradable microplastics contaminated soil. Ecotoxicology and Environmental Safety 262:115129

doi: 10.1016/j.ecoenv.2023.115129
[83]

Lian Y, Shi R, Liu J, Zeb A, Wang Q, et al. 2024. Effects of polystyrene, polyethylene, and polypropylene microplastics on the soil-rhizosphere-plant system: Phytotoxicity, enzyme activity, and microbial community. Journal of Hazardous Materials 465:133417

doi: 10.1016/j.jhazmat.2023.133417
[84]

Wu H, He B, Chen B, Liu A. 2023. Toxicity of polyvinyl chloride microplastics on Brassica rapa. Environmental Pollution 336:122435

doi: 10.1016/j.envpol.2023.122435
[85]

Han F, Liu H, Wang H, Li C, Zhang Y, et al. 2024. Effects of two microplastics on the growth and physiological characteristics in lettuce. Journal of Agro-Environment Science 43:1698−1709

doi: 10.11654/jaes.2023-0872
[86]

Zhao Y, Yue Z, Zhong X, Lei J, Tao P, et al. 2020. Distribution of primary and secondary metabolites among the leaf layers of headed cabbage (Brassica oleracea var. capitata). Food Chemistry 312:126028

doi: 10.1016/j.foodchem.2019.126028
[87]

Zulfiqar F, Ashraf M. 2023. Proline alleviates abiotic stress induced oxidative stress in plants. Journal of Plant Growth Regulation 42:4629−4651

doi: 10.1007/s00344-022-10839-3
[88]

Li Z, Li Q, Li R, Zhou J, Wang G. 2021. The distribution and impact of polystyrene nanoplastics on cucumber plants. Environmental Science and Pollution Research 28:16042−16053

doi: 10.1007/s11356-020-11702-2
[89]

Liao Y, Jahitbek N, Li M, Wang X, Jiang L. 2019. 微塑料对小麦生长及生理生化特性的影响 [Effects of microplastics on the growth, physiology and biochemical characteristics of wheat (Triticum aestivum)]. 环境科学 [Environmental Science] 40:4661−4667

doi: 10.13227/j.hjkx.201903113
[90]

Yu Y, Kumar M, Bolan S, Padhye LP, Bolan N, et al. 2024. Various additive release from microplastics and their toxicity in aquatic environments. Environmental Pollution 343:123219

doi: 10.1016/j.envpol.2023.123219
[91]

Wang H, He Y, Zheng Q, Yang Q, Wang J, et al. 2024. Toxicity of photoaged polyvinyl chloride microplastics to wheat seedling roots. Journal of Hazardous Materials 463:132816

doi: 10.1016/j.jhazmat.2023.132816
[92]

Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P. 2018. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials 344:179−199

doi: 10.1016/j.jhazmat.2017.10.014
[93]

Wang H, Wang D, Zheng Q, He Y, Yang Q, et al. 2025. Tris(2, 4-di-tert-butylphenyl) phosphate is the key toxicant in aged polyvinyl chloride microplastics to wheat (Triticum aestivum L.) roots. ACS Agricultural Science & Technology 5:166−175

doi: 10.1021/acsagscitech.4c00520
[94]

Chai B, Yin H, Xiao T, Xiao E, Dang Z, et al. 2024. Effects of microplastics on endophytes in different niches of chinese flowering cabbage (Brassica campestris). Journal of Agricultural and Food Chemistry 72:4679−4688

doi: 10.1021/acs.jafc.3c09092
[95]

Jiang M, Li S, Li H, Jian S, Liu F, et al. 2023. Reprogramming of microbial community in barley root endosphere and rhizosphere soil by polystyrene plastics with different particle sizes. Science of The Total Environment 866:161420

doi: 10.1016/j.scitotenv.2023.161420
[96]

Gao M, Bai L, Xiao L, Peng H, Chen Q, et al. 2024. Micro (nano)plastics and phthalate esters drive endophytic bacteria alteration and inhibit wheat root growth. Science of The Total Environment 906:167734

doi: 10.1016/j.scitotenv.2023.167734
[97]

Zhuang H, Li Z, Wang M, Liu B, Chu Y, et al. 2024. Effects of microplastics and combined pollution of polystyrene and di-n-octyl phthalate on photosynthesis of cucumber (Cucumis sativus L.). Science of The Total Environment 947:174426

doi: 10.1016/j.scitotenv.2024.174426
[98]

Ma T, Zhou W, Chen L, Wu L, Christie P, et al. 2018. Toxicity of phthalate esters to lettuce (Lactuca sativa) and the soil microbial community under different soil conditions. PLoS ONE 13:e0208111

doi: 10.1371/journal.pone.0208111
[99]

Gao M, Guo Z, Dong Y, Song Z. 2019. Effects of di-n-butyl phthalate on photosynthetic performance and oxidative damage in different growth stages of wheat in cinnamon soils. Environmental Pollution 250:357−365

doi: 10.1016/j.envpol.2019.04.022
[100]

Li X, Zhang Y, Wang J, Zeng G, Tong X, et al. 2023. Revealing the metabolomics and biometrics underlying phytotoxicity mechanisms for polystyrene nanoplastics and dibutyl phthalate in dandelion (Taraxacum officinale). Science of The Total Environment 905:167071

doi: 10.1016/j.scitotenv.2023.167071
[101]

Gao M, Dong Y, Zhang Z, Song W, Qi Y. 2017. Growth and antioxidant defense responses of wheat seedlings to di-n-butyl phthalate and di (2-ethylhexyl) phthalate stress. Chemosphere 172:418−428

doi: 10.1016/j.chemosphere.2017.01.034
[102]

Ma T, Christie P, Teng Y, Luo Y. 2013. Rape (Brassica chinensis L.) seed germination, seedling growth, and physiology in soil polluted with di-n-butyl phthalate and bis (2-ethylhexyl) phthalate. Environmental Science and Pollution Research 20:5289−5298

doi: 10.1007/s11356-013-1520-5
[103]

United Nations Environment Programme and Secretariat of the Basel, Rotterdam and Stockholm Conventions. 2023. Chemicals in plastics: a technical report. Report. Geneva. www.unep.org/resources/report/chemicals-plastics-technical-report

[104]

Xing Y, Gong X, Wang P, Wang Y, Wang L. 2023. Occurrence and release of organophosphite antioxidants and novel organophosphate esters from plastic food packaging. Journal of Agricultural and Food Chemistry 71:11599−11606

doi: 10.1021/acs.jafc.3c01138
[105]

Zhang J, Wang L, Li M, Jiao L, Zhou Q, et al. 2015. Effects of bisphenol A on chlorophyll fluorescence in five plants. Environmental Science and Pollution Research 22:17724−17732

doi: 10.1007/s11356-015-5003-8
[106]

Gardon T, Huvet A, Paul-Pont I, Cassone AL, Sham Koua M, et al. 2020. Toxic effects of leachates from plastic pearl-farming gear on embryo-larval development in the pearl oyster Pinctada margaritifera. Water Research 179:115890

doi: 10.1016/j.watres.2020.115890
[107]

Yang L, Zhang Y, Kang S, Wang Z, Wu C. 2021. Microplastics in soil: a review on methods, occurrence, sources, and potential risk. Science of The Total Environment 780:146546

doi: 10.1016/j.scitotenv.2021.146546
[108]

Zhu Y, Wang H, Xiang X, Hayat K, Wu R, et al. 2024. A dose-dependent effect of UV-328 on photosynthesis: Exploring light harvesting and UV-B sensing mechanisms. Journal of Hazardous Materials 473:134670

doi: 10.1016/j.jhazmat.2024.134670
[109]

Liu H, Wang M, Jin S, Guo Q, Wang S, et al. 2024. Coordinated responses of rice (Oryza sativa) to the stresses of benzotriazole ultraviolet stabilizers (BZT-UVs): Antioxidative system, photosynthetic activity, and metabolic regulation. Journal of Hazardous Materials 476:135157

doi: 10.1016/j.jhazmat.2024.135157
[110]

Rothenbacher KP, Pecquet AM. 2018. Summary of historical terrestrial toxicity data for the brominated flame retardant tetrabromobisphenol A (TBBPA): effects on soil microorganisms, earthworms, and seedling emergence. Environmental Science and Pollution Research 25:17268−17277

doi: 10.1007/s11356-018-2255-0
[111]

Pflugmacher S, Tallinen S, Kim YJ, Kim S, Esterhuizen M. 2021. Ageing affects microplastic toxicity over time: Effects of aged polycarbonate on germination, growth, and oxidative stress of Lepidium sativum. Science of The Total Environment 790:148166

doi: 10.1016/j.scitotenv.2021.148166
[112]

Nagajyoti PC, Lee KD, Sreekanth TVM. 2010. Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters 8:199−216

doi: 10.1007/s10311-010-0297-8
[113]

Jędruchniewicz K, Bogusz A, Chańko M, Bank MS, Alessi DS, et al. 2023. Extractability and phytotoxicity of heavy metals and essential elements from plastics in soil solutions and root exudates. Science of The Total Environment 905:166100

doi: 10.1016/j.scitotenv.2023.166100
[114]

Meng J, Diao C, Cui Z, Li Z, Zhao J, et al. 2024. Unravelling the influence of microplastics with/without additives on radish (Raphanus sativus) and microbiota in two agricultural soils differing in pH. Journal of Hazardous Materials 478:135535

doi: 10.1016/j.jhazmat.2024.135535
[115]

Luo H, Liu C, He D, Sun J, Li J, et al. 2022. Effects of aging on environmental behavior of plastic additives: Migration, leaching, and ecotoxicity. Science of The Total Environment 849:157951

doi: 10.1016/j.scitotenv.2022.157951
[116]

An Q, Wen C, Yan C. 2024. Meta-analysis reveals the combined effects of microplastics and heavy metal on plants. Journal of Hazardous Materials 476:135028

doi: 10.1016/j.jhazmat.2024.135028
[117]

Khan AR, Ulhassan Z, Li G, Lou J, Iqbal B, et al. 2024. Micro/nanoplastics: Critical review of their impacts on plants, interactions with other contaminants (antibiotics, heavy metals, and polycyclic aromatic hydrocarbons), and management strategies. Science of The Total Environment 912:169420

doi: 10.1016/j.scitotenv.2023.169420
[118]

Mao H, Yang H, Xu Z, Yang Y, Zhang X, et al. 2023. Microplastics and co-pollutant with ciprofloxacin affect interactions between free-floating macrophytes. Environmental Pollution 316:120546

doi: 10.1016/j.envpol.2022.120546
[119]

Shen L, Zhang P, Lin Y, Huang X, Zhang S, et al. 2023. Polystyrene microplastic attenuated the toxic effects of florfenicol on rice (Oryza sativa L. ) seedlings in hydroponics: From the perspective of oxidative response, phototoxicity and molecular metabolism. Journal of Hazardous Materials 459:132176

doi: 10.1016/j.jhazmat.2023.132176
[120]

Gao M, Bai L, Xiao L, Chen Q, Fan W, et al. 2023. Response of wheat (Triticum aestivum L. cv.) seedlings to combined effects of polystyrene nanoparticles and tetracycline. Environmental Science: Nano 10:1040−1052

doi: 10.1039/D2EN00960A
[121]

Khan KY, Li G, Du D, Ali B, Zhang S, et al. 2023. Impact of polystyrene microplastics with combined contamination of norfloxacin and sulfadiazine on Chrysanthemum coronarium L. Environmental Pollution 316:120522

doi: 10.1016/j.envpol.2022.120522
[122]

Liu S, Wang J, Zhu J, Wang J, Wang H, et al. 2021. The joint toxicity of polyethylene microplastic and phenanthrene to wheat seedlings. Chemosphere 282:130967

doi: 10.1016/j.chemosphere.2021.130967
[123]

Xu G, Liu Y, Yu Y. 2021. Effects of polystyrene microplastics on uptake and toxicity of phenanthrene in soybean. Science of The Total Environment 783:147016

doi: 10.1016/j.scitotenv.2021.147016
[124]

Wang J, Lu S, Bian H, Xu M, Zhu W, et al. 2022. Effects of individual and combined polystyrene nanoplastics and phenanthrene on the enzymology, physiology, and transcriptome parameters of rice (Oryza sativa L.). Chemosphere 304:135341

doi: 10.1016/j.chemosphere.2022.135341
[125]

Lu L, Zhao J, Shentu J, Long Y, Shen D, et al. 2025. Investigating the co-transport and combined toxicity effect of micro-/nano-plastics and PAHs in ryegrass. Journal of Environmental Management 382:125424

doi: 10.1016/j.jenvman.2025.125424
[126]

Arikan B, Ozfidan-Konakci C, Yildiztugay E, Turan M, Cavusoglu H. 2022. Polystyrene nanoplastic contamination mixed with polycyclic aromatic hydrocarbons: Alleviation on gas exchange, water management, chlorophyll fluorescence and antioxidant capacity in wheat. Environmental Pollution 311:119851

doi: 10.1016/j.envpol.2022.119851
[127]

Editorial team. 2023. On the plastics crisis. Nature Sustainability 6:1137

doi: 10.1038/s41893-023-01236-z
[128]

Zhu R, Zhang Z, Zhang N, Zhong H, Zhou F, et al. 2025. A global estimate of multiecosystem photosynthesis losses under microplastic pollution. Proceedings of the National Academy of Sciences 122:e2423957122

doi: 10.1073/pnas.2423957122
[129]

Lesk C, Rowhani P, Ramankutty N. 2016. Influence of extreme weather disasters on global crop production. Nature 529:84−87

doi: 10.1038/nature16467
[130]

Lobell DB, Schlenker W, Costa-Roberts J. 2011. Climate trends and global crop production since 1980. Science 333:616−620

doi: 10.1126/science.1204531
[131]

Zhou J, Xu H, Xiang Y, Wu J. 2024. Effects of microplastics pollution on plant and soil phosphorus: A meta-analysis. Journal of Hazardous Materials 461:132705

doi: 10.1016/j.jhazmat.2023.132705
[132]

Xiang Y, Peñuelas J, Sardans J, Liu Y, Yao B, et al. 2023. Effects of microplastics exposure on soil inorganic nitrogen: a comprehensive synthesis. Journal of Hazardous Materials 460:132514

doi: 10.1016/j.jhazmat.2023.132514
[133]

Wang F, Wang Q, Adams CA, Sun Y, Zhang S. 2022. Effects of microplastics on soil properties: current knowledge and future perspectives. Journal of Hazardous Materials 424:127531

doi: 10.1016/j.jhazmat.2021.127531
[134]

Jiang X, White JC, He E, Van Gestel CAM, Cao X, et al. 2024. Foliar exposure of deuterium stable isotope-labeled nanoplastics to lettuce: quantitative determination of foliar uptake, transport, and trophic transfer in a terrestrial food chain. Environmental Science & Technology 58:15438−15449

doi: 10.1021/acs.est.4c03123
[135]

Abdolahpur Monikh F, Holm S, Kortet R, Bandekar M, Kekäläinen J, et al. 2022. Quantifying the trophic transfer of sub-micron plastics in an assembled food chain. Nano Today 46:101611

doi: 10.1016/j.nantod.2022.101611
[136]

Huang Z, Liu D, Cheng W, Zhang W, He Z, et al. 2025. Microplastics in the Amur tiger's habitat: Occurrence, characteristics, and risk assessment. Journal of Hazardous Materials 493:138380

doi: 10.1016/j.jhazmat.2025.138380
[137]

Oliveri Conti G, Ferrante M, Banni M, Favara C, Nicolosi I, et al. 2020. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environmental Research 187:109677

doi: 10.1016/j.envres.2020.109677
[138]

Song Y, Zhang J, Yang L, Huang Y, Zhang N, et al. 2024. Internal and external microplastic exposure in young adults: a pilot study involving 26 college students in Changsha, China. Environmental Research 263:120250

doi: 10.1016/j.envres.2024.120250
[139]

Cao X, Wang C, Luo X, Yue L, White JC, et al. 2024. Nano- and microplastics increase the occurrence of bacterial wilt in tomato (Solanum lycopersicum L.). ACS Nano 18:18071−18084

doi: 10.1021/acsnano.4c05875
[140]

Lammel DR, Kim SW, Rong L, Chen H, Ingraffia R, et al. 2025. Effects of microplastic types and shapes on the community structure of arbuscular mycorrhizal fungi in different soil types. Environmental Science and Pollution Research 32:12504−12512

doi: 10.1007/s11356-025-36408-1
[141]

Wang F, Zhang X, Zhang S, Zhang S, Sun Y. 2020. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere 254:126791

doi: 10.1016/j.chemosphere.2020.126791
[142]

Leifheit EF, Lehmann A, Rillig MC. 2021. Potential effects of microplastic on arbuscular mycorrhizal fungi. Frontiers in Plant Science 12:626709

doi: 10.3389/fpls.2021.626709
[143]

Wang Q, Feng X, Liu Y, Li W, Cui W, et al. 2023. Response of peanut plant and soil N-fixing bacterial communities to conventional and biodegradable microplastics. Journal of Hazardous Materials 459:132142

doi: 10.1016/j.jhazmat.2023.132142
[144]

Zhang G, Zhang F, Li X. 2019. Effects of polyester microfibers on soil physical properties: perception from a field and a pot experiment. Science of The Total Environment 670:1−7

doi: 10.1016/j.scitotenv.2019.03.149
[145]

Gao M, Liu Y, Song Z. 2019. Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (Lactuca sativa L. var. ramosa Hort). Chemosphere 237:124482

doi: 10.1016/j.chemosphere.2019.124482
[146]

Yao S, Li X, Wang T, Jiang X, Song Y, et al. 2023. Soil metabolome impacts the formation of the eco-corona and adsorption processes on microplastic surfaces. Environmental Science & Technology 57:8139−8148

doi: 10.1021/acs.est.3c01877
[147]

Rillig MC, Kim SW, Zhu YG. 2024. The soil plastisphere. Nature Reviews Microbiology 22:64−74

doi: 10.1038/s41579-023-00967-2
[148]

Ni B, Lin D, Cai T, Du S, Zhu D. 2024. Soil plastisphere reinforces the adverse effect of combined pollutant exposure on the microfood web. Environmental Science & Technology 58:21641−21652

doi: 10.1021/acs.est.4c07773
[149]

Sun Y, Shi J, Wang X, Ding C, Wang J. 2022. Deciphering the mechanisms shaping the plastisphere microbiota in soil. mSystems 7:e00352-22

doi: 10.1128/msystems.00352-22
[150]

Shi R, Lian Y, Zeb A, Liu J, Yu M, et al. 2025. Foliar exposure to microplastics disrupts lettuce metabolism and negatively interferes with symbiotic microbial communities. Plant Physiology and Biochemistry 223:109823

doi: 10.1016/j.plaphy.2025.109823
[151]

Hao B, Wu H, You Y, Liang Y, Huang L, et al. 2023. Bacterial community are more susceptible to nanoplastics than algae community in aquatic ecosystems dominated by submerged macrophytes. Water Research 232:119717

doi: 10.1016/j.watres.2023.119717
[152]

O'Brien AM, Lins TF, Yang Y, Frederickson ME, Sinton D, et al. 2022. Microplastics shift impacts of climate change on a plant-microbe mutualism: Temperature, CO2, and tire wear particles. Environmental Research 203:111727

doi: 10.1016/j.envres.2021.111727