[1]

OECD/FAO. 2024. OECD-FAO Agricultural Outlook 2024−2033. www.oecd.org/en/publications/oecd-fao-agricultural-outlook-2024-2033_4c5d2cfb-en.html

[2]

Hannan FM, Elajnaf T, Vandenberg LN, Kennedy SH, Thakker RV. 2023. Hormonal regulation of mammary gland development and lactation. Nature Reviews Endocrinology 19:46−61

doi: 10.1038/s41574-022-00742-y
[3]

Sandhu GK, Milevskiy MJG, Wilson W, Shewan AM, Brown MA. 2016. Non-coding RNAs in Mammary Gland Development and Disease. Advances in Experimental Medicine and Biology 886:121−53

doi: 10.1007/978-94-017-7417-8_7
[4]

Howard B, Ashworth A. 2006. Signalling pathways implicated in early mammary gland morphogenesis and breast cancer. PLoS Genetics 2:e112

doi: 10.1371/journal.pgen.0020112
[5]

Brisken C, Heineman A, Chavarria T, Elenbaas B, Tan J, et al. 2000. Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes & Development 14:650−4

doi: 10.1101/gad.14.6.650
[6]

Cho KW, Kim JY, Song SJ, Farrell E, Eblaghie MC, et al. 2006. Molecular interactions between Tbx3 and Bmp4 and a model for dorsoventral positioning of mammary gland development. Proceedings of the National Academy of Sciences of the United States of America 103:16788−93

doi: 10.1073/pnas.0604645103
[7]

Phippard DJ, Weber-Hall SJ, Sharpe PT, Naylor MS, Jayatalake H, et al. 1996. Regulation of Msx-1, Msx-2, Bmp-2 and Bmp-4 during foetal and postnatal mammary gland development. Development 122:2729−37

doi: 10.1242/dev.122.9.2729
[8]

Hiremath M, Wysolmerski J. 2013. Parathyroid hormone-related protein specifies the mammary mesenchyme and regulates embryonic mammary development. Journal of Mammary Gland Biology and Neoplasia 18:171−77

doi: 10.1007/s10911-013-9283-7
[9]

Michno K, Boras-Granic K, Mill P, Hui CC, Hamel PA. 2003. Shh expression is required for embryonic hair follicle but not mammary gland development. Developmental Biology 264:153−65

doi: 10.1016/S0012-1606(03)00401-9
[10]

Lee MY, Sun L, Veltmaat JM. 2013. Hedgehog and gli signaling in embryonic mammary gland development. Journal of Mammary Gland Biology and Neoplasia 18:133−38

doi: 10.1007/s10911-013-9291-7
[11]

Mailleux AA, Spencer-Dene B, Dillon C, Ndiaye D, Savona-Baron C, et al. 2002. Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development 129:53−60

doi: 10.1242/dev.129.1.53
[12]

Eblaghie MC, Song SJ, Kim JY, Akita K, Tickle C, et al. 2004. Interactions between FGF and Wnt signals and Tbx3 gene expression in mammary gland initiation in mouse embryos. Journal of Anatomy 205:1−13

doi: 10.1111/j.0021-8782.2004.00309.x
[13]

Uyttendaele H, Soriano JV, Montesano R, Kitajewski J. 1998. Notch4 and Wnt-1 proteins function to regulate branching morphogenesis of mammary epithelial cells in an opposing fashion. Developmental Biology 196:204−17

doi: 10.1006/dbio.1998.8863
[14]

Watson CJ, Khaled WT. 2020. Mammary development in the embryo and adult: new insights into the journey of morphogenesis and commitment. Development 147:dev169862

doi: 10.1242/dev.169862
[15]

Macias H, Hinck L. 2012. Mammary gland development. WIREs Developmental Biology 1:533−57

doi: 10.1002/wdev.35
[16]

Fata JE, Kong YY, Li J, Sasaki T, Irie-Sasaki J, et al. 2000. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 103:41−50

doi: 10.1016/S0092-8674(00)00103-3
[17]

Wickenden JA, Watson CJ. 2010. Key signalling nodes in mammary gland development and cancer. Signalling downstream of PI3 kinase in mammary epithelium: a play in 3 Akts. Breast Cancer Research 12:202

doi: 10.1186/bcr2558
[18]

Yamamoto M, Abe C, Wakinaga S, Sakane K, Yumiketa Y, et al. 2019. TRAF6 maintains mammary stem cells and promotes pregnancy-induced mammary epithelial cell expansion. Communications Biology 2:292

doi: 10.1038/s42003-019-0547-7
[19]

Pavitra E, Kancharla J, Gupta VK, Prasad K, Sung JY, et al. 2023. The role of NF-κB in breast cancer initiation, growth, metastasis, and resistance to chemotherapy. Biomedicine & Pharmacotherapy 163:114822

doi: 10.1016/j.biopha.2023.114822
[20]

Moses H, Barcellos-Hoff MH. 2011. TGF-beta biology in mammary development and breast cancer. Cold Spring Harb Perspect Biol 3:a003277

[21]

Bahar ME, Kim HJ, Kim DR. 2023. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduction and Targeted Therapy 8:455

doi: 10.1038/s41392-023-01705-z
[22]

Whyte J, Bergin O, Bianchi A, McNally S, Martin F. 2009. Key signalling nodes in mammary gland development and cancer. Mitogen-activated protein kinase signalling in experimental models of breast cancer progression and in mammary gland development. Breast Cancer Research 11:209

doi: 10.1186/bcr2361
[23]

Gajewska M, Zielniok K, Motyl T. 2013. Autophagy in development and remodelling of mammary gland. In Autophagy – A Double-Edged Sword – Cell Survival or Death? ed. Bailly Y. Rijeka: IntechOpen. doi: 10.5772/54558

[24]

Oftedal OT, Dhouailly D. 2013. Evo-devo of the mammary gland. Journal of Mammary Gland Biology and Neoplasia 18:105−20

doi: 10.1007/s10911-013-9290-8
[25]

Robinson GW. 2007. Cooperation of signalling pathways in embryonic mammary gland development. Nature Reviews Genetics 8:963−72

doi: 10.1038/nrg2227
[26]

Spina E, Cowin P. 2021. Embryonic mammary gland development. Seminars in Cell & Developmental Biology 114:83−92

doi: 10.1016/j.semcdb.2020.12.012
[27]

Hurley WL. 2019. Review: Mammary gland development in swine: embryo to early lactation. Animal 13:s11−s19

doi: 10.1017/S1751731119000521
[28]

Slepicka PF, Somasundara AVH, dos Santos CO. 2021. The molecular basis of mammary gland development and epithelial differentiation. Seminars in Cell & Developmental Biology 114:93−112

doi: 10.1016/j.semcdb.2020.09.014
[29]

Hens JR, Wysolmerski JJ. 2005. Key stages of mammary gland development: molecular mechanisms involved in the formation of the embryonic mammary gland. Breast Cancer Research 7:220−4

doi: 10.1186/bcr1306
[30]

Vang AL, Dorea JRR, Hernandez LL. 2024. Graduate student literature review: mammary gland development in dairy cattle—quantifying growth and development*. Journal of Dairy Science 107:11611−20

doi: 10.3168/jds.2024-25007
[31]

Rowson AR, Daniels KM, Ellis SE, Hovey RC. 2012. Growth and development of the mammary glands of livestock: a veritable barnyard of opportunities. Seminars in Cell & Developmental Biology 23:557−66

doi: 10.1016/j.semcdb.2012.03.018
[32]

Solodneva EV, Kuznetsov SB, Velieva AE, Stolpovsky YA. 2022. Molecular-genetic bases of mammary gland development using the example of cattle and other animal species: I. Embryonic and pubertal developmental stage. Russian Journal of Genetics 58:899−914

doi: 10.1134/S1022795422080087
[33]

Hennighausen L, Robinson GW. 2001. Signaling pathways in mammary gland development. Developmental Cell 1:467−75

doi: 10.1016/S1534-5807(01)00064-8
[34]

Hardy KM, Booth BW, Hendrix MJC, Salomon DS, Strizzi L. 2010. ErbB/EGF signaling and EMT in mammary development and breast cancer. Journal of Mammary Gland Biology and Neoplasia 15:191−99

doi: 10.1007/s10911-010-9172-2
[35]

Chu EY, Hens J, Andl T, Kairo A, Yamaguchi TP, et al. 2004. Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development 131:4819−29

doi: 10.1242/dev.01347
[36]

van Genderen C, Okamura RM, Fariñas I, Quo RG, Parslow TG, et al. 1994. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes & Development 8:2691−703

doi: 10.1101/gad.8.22.2691
[37]

Berryhill GE, Trott JF, Hovey RC. 2016. Mammary gland development—It's not just about estrogen. Journal of Dairy Science 99:875−83

doi: 10.3168/jds.2015-10105
[38]

Dunbar ME, Dann PR, Robinson GW, Hennighausen L, Zhang JP, et al. 1999. Parathyroid hormone-related protein signaling is necessary for sexual dimorphism during embryonic mammary development. Development 126:3485−93

doi: 10.1242/dev.126.16.3485
[39]

Hatsell SJ, Cowin P. 2006. Gli3-mediated repression of Hedgehog targets is required for normal mammary development. Development 133:3661−70

doi: 10.1242/dev.02542
[40]

Monkkonen T, Lewis MT. 2017. New paradigms for the Hedgehog signaling network in mammary gland development and breast Cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1868:315−32

doi: 10.1016/j.bbcan.2017.06.003
[41]

Davenport TG, Jerome-Majewska LA, Papaioannou VE. 2003. Mammary gland, limb and yolk sac defects in mice lacking Tbx3, the gene mutated in human ulnar mammary syndrome. Development 130:2263−73

doi: 10.1242/dev.00431
[42]

Lucas JN, Rudmann DG, Credille KM, Irizarry AR, Peter A, et al. 2007. The rat mammary gland: morphologic changes as an indicator of systemic hormonal perturbations induced by xenobiotics. Toxicol Pathol 35:199−207

doi: 10.1080/01926230601156260
[43]

Sinha YN, Tucker HA. 1969. Mammary development and pituitary prolactin level of heifers from birth through puberty and during the estrous cycle. Journal of Dairy Science 52:507−12

doi: 10.3168/jds.S0022-0302(69)86595-1
[44]

Sternlicht MD. 2005. Key stages in mammary gland development: The cues that regulate ductal branching morphogenesis. Breast Cancer Research 8:201

doi: 10.1186/bcr1368
[45]

Paine IS, Lewis MT. 2017. The Terminal End Bud: the Little Engine that Could. Journal of Mammary Gland Biology and Neoplasia 22:93−108

doi: 10.1007/s10911-017-9372-0
[46]

Arendt LM, Kuperwasser C. 2015. Form and function: how estrogen and progesterone regulate the mammary epithelial hierarchy. Journal of Mammary Gland Biology and Neoplasia 20:9−25

doi: 10.1007/s10911-015-9337-0
[47]

McNally S, Martin F. 2011. Molecular regulators of pubertal mammary gland development. Annals of Medicine 43:212−34

doi: 10.3109/07853890.2011.554425
[48]

Berry SDK, Jobst PM, Ellis SE, Howard RD, Capuco AV, et al. 2003. Mammary epithelial proliferation and estrogen receptor α Expression in prepubertal heifers: effects of ovariectomy and growth hormone. Journal of Dairy Science 86:2098−105

doi: 10.3168/jds.S0022-0302(03)73799-0
[49]

Farnie G, Clarke RB. 2007. Mammary Stem Cells and Breast Cancer—Role of Notch Signalling. Stem Cell Reviews 3:169−75

doi: 10.1007/s12015-007-0023-5
[50]

Edwards A, Brennan K. 2021. Notch signalling in breast development and cancer. Frontiers in Cell and Developmental Biology 9:692173

doi: 10.3389/fcell.2021.692173
[51]

Bonadeo N, Becu-Villalobos D, Cristina C, Lacau-Mengido IM. 2019. The Notch system during pubertal development of the bovine mammary gland. Scientific Reports 9:8899

doi: 10.1038/s41598-019-45406-6
[52]

Rasha F, Sharma M, Pruitt K. 2021. Mechanisms of endocrine therapy resistance in breast cancer. Molecular and Cellular Endocrinology 532:111322

doi: 10.1016/j.mce.2021.111322
[53]

Conneely OM, Jericevic BM, Lydon JP. 2003. Progesterone receptors in mammary gland development and tumorigenesis. Journal of Mammary Gland Biology and Neoplasia 8:205−14

doi: 10.1023/A:1025952924864
[54]

Aupperlee MD, Leipprandt JR, Bennett JM, Schwartz RC, Haslam SZ. 2013. Amphiregulin mediates progesterone-induced mammary ductal development during puberty. Breast Cancer Research 15:R44

doi: 10.1186/bcr3431
[55]

Woodward TL, Beal WE, Akers RM. 1993. Cell interactions in initiation of mammary epithelial proliferation by oestradiol and progesterone in prepubertal heifers. The Journal of Endocrinology 136:149−57

doi: 10.1677/joe.0.1360149
[56]

Sejrsen K, Purup S, Vestergaard M, Weber MS, Knight CH. 1999. Growth hormone and mammary development. Domestic Animal Endocrinology 17:117−29

doi: 10.1016/S0739-7240(99)00029-6
[57]

Radcliff RP, VandeHaar MJ, Skidmore AL, Chapin LT, Radke BR, et al. 1997. Effects of diet and bovine somatotropin on heifer growth and mammary development. Journal of Dairy Science 80:1996−2003

doi: 10.3168/jds.S0022-0302(97)76143-5
[58]

Ringuet H, Petitclerc D, Sorensen MT, Gaudreau P, Pelletier G, et al. 1989. Effect of human somatotropin-releasing factor and photoperiods on carcass parameters and mammary gland development of dairy heifers. Journal of Dairy Science 72:2928−35

doi: 10.3168/jds.S0022-0302(89)79444-3
[59]

Kensinger RS, Collier RJ, Bazer FW, Ducsay CA, Becker HN. 1982. Nucleic acid, metabolic and histological changes in gilt mammary tissue during pregnancy and lactogenesis. Journal of Animal Science 54:1297−308

doi: 10.2527/jas1982.5461297x
[60]

Sheffield LG, Anderson RR. 1985. Interspecies variation in mammary gland growth rate: relationship to gestation length. Journal of Dairy Science 68:2571−9

doi: 10.3168/jds.S0022-0302(85)81139-5
[61]

Tucker HA. 1969. Factors affecting mammary gland cell numbers. Journal of Dairy Science 52:720−29

doi: 10.3168/jds.S0022-0302(69)86637-3
[62]

Smith JJ, Capuco AV, Beal WE, Akers RM. 1989. Association of prolactin and insulin receptors with mammogenesis and lobulo-alveolar formation in pregnant ewes. International Journal of Biochemistry 21:73−81

doi: 10.1016/0020-711X(89)90029-3
[63]

Shyamala G. 1997. Roles of estrogen and progesterone in normal mammary gland development insights from progesterone receptor null mutant mice and in situ localization of receptor. Trends in Endocrinology and Metabolism 8:34−39

doi: 10.1016/S1043-2760(96)00207-X
[64]

Byatt JC, Eppard PJ, Veenhuizen JJ, Curran TL, Curran DF, et al. 1994. Stimulation of mammogenesis and lactogenesis by recombinant bovine placental lactogen in steroid-primed dairy heifers. The Journal of Endocrinology 140:33−43

doi: 10.1677/joe.0.1400033
[65]

Li L, Zhang Z, Li H, Zhou M, Li F, et al. 2023. Research progress on the STAT signaling pathway in pregnancy and pregnancy-associated disorders. Frontiers in Immunology 14:1331964

[66]

Cordero A, Pellegrini P, Sanz-Moreno A, Trinidad EM, Serra-Musach J, et al. 2016. Rankl impairs lactogenic differentiation through inhibition of the Prolactin/Stat5 pathway at midgestation. Stem Cells 34:1027−39

doi: 10.1002/stem.2271
[67]

Dai W, White R, Liu J, Liu H. 2022. Organelles coordinate milk production and secretion during lactation: Insights into mammary pathologies. Progress in Lipid Research 86:101159

doi: 10.1016/j.plipres.2022.101159
[68]

Kim YJ. 2020. Pivotal roles of prolactin and other hormones in lactogenesis and the nutritional composition of human milk. Clinical and Experimental Pediatrics 63:312−13

doi: 10.3345/cep.2020.00311
[69]

Karayazi Atıcı Ö, Govindrajan N, Lopetegui-González I, Shemanko CS. 2021. Prolactin: a hormone with diverse functions from mammary gland development to cancer metastasis. Seminars in Cell & Developmental Biology 114:159−70

doi: 10.1016/j.semcdb.2020.10.005
[70]

Radhakrishnan A, Raju R, Tuladhar N, Subbannayya T, Thomas JK, et al. 2012. A pathway map of prolactin signaling. Journal of Cell Communication and Signaling 6:169−73

doi: 10.1007/s12079-012-0168-0
[71]

Lippuner K, Zehnder HJ, Casez JP, Takkinen R, Jaeger P. 1996. PTH-related protein is released into the mother's bloodstream during lactation: evidence for beneficial effects on maternal calcium-phosphate metabolism. Journal of Bone and Mineral Research 11:1394−99

doi: 10.1002/jbmr.5650111004
[72]

Uvnäs Moberg K, Ekström-Bergström A, Buckley S, Massarotti C, Pajalic Z, et al. 2020. Maternal plasma levels of oxytocin during breastfeeding - a systematic review. PLoS One 15:e0235806

doi: 10.1371/journal.pone.0235806
[73]

Soloff MS. 1982. Oxytocin Receptors and Mammary Myoepithelial Cells. Journal of Dairy Science 65:326−37

doi: 10.3168/jds.S0022-0302(82)82194-2
[74]

Casey TM, Plaut K. 2007. The role of glucocorticoids in secretory activation and milk secretion, a historical perspective. Journal of Mammary Gland Biology and Neoplasia 12:293−304

doi: 10.1007/s10911-007-9055-3
[75]

Hollanders JJ, Heijboer AC, van der Voorn B, Rotteveel J, Finken MJJ. 2017. Nutritional programming by glucocorticoids in breast milk: Targets, mechanisms and possible implications. Best Practice & Research Clinical Endocrinology & Metabolism 31:397−408

doi: 10.1016/j.beem.2017.10.001
[76]

Shiu RP, Iwasiow BM. 1985. Prolactin-inducible proteins in human breast cancer cells. Journal of Biological Chemistry 260:11307−13

doi: 10.1016/S0021-9258(17)39181-0
[77]

Canul-Medina G, Fernandez-Mejia C. 2019. Morphological, hormonal, and molecular changes in different maternal tissues during lactation and post-lactation. The Journal of Physiological Sciences 69:825−35

doi: 10.1007/s12576-019-00714-4
[78]

Holst BD, Hurley WL, Nelson DR. 1987. Involution of the bovine mammary gland: histological and ultrastructural changes. Journal of Dairy Science 70:935−44

doi: 10.3168/jds.S0022-0302(87)80097-8
[79]

Tatarczuch L, Philip C, Lee CS. 1997. Involution of the sheep mammary gland. Journal of Anatomy 190:405−16

doi: 10.1046/j.1469-7580.1997.19030405.x
[80]

Ford JA, Jr., Kim SW, Rodriguez-Zas SL, Hurley WL. 2003. Quantification of mammary gland tissue size and composition changes after weaning in sows. Journal of Animal Science 81:2583−89

doi: 10.2527/2003.81102583x
[81]

Cross BA, Goodwin RF, Silver IA. 1958. A histological and functional study of the mammary gland in normal and agalactic sows. The Journal of Endocrinology 17:63−74

doi: 10.1677/joe.0.0170063
[82]

Humphreys RC, Bierie B, Zhao L, Raz R, Levy D, et al. 2002. Deletion of Stat3 blocks mammary gland involution and extends functional competence of the secretory epithelium in the absence of lactogenic stimuli. Endocrinology 143:3641−50

doi: 10.1210/en.2002-220224
[83]

Rabot A, Sinowatz F, Berisha B, Meyer HHD, Schams D. 2007. Expression and localization of extracellular matrix-degrading proteinases and their inhibitors in the bovine mammary gland during development, function, and involution. Journal of Dairy Science 90:740−8

doi: 10.3168/jds.S0022-0302(07)71558-8
[84]

Watson CJ. 2006. Involution: apoptosis and tissue remodelling that convert the mammary gland from milk factory to a quiescent organ. Breast Cancer Research 8:203

doi: 10.1186/bcr1401
[85]

Lund LR, Bjørn SF, Sternlicht MD, Nielsen BS, Solberg H, et al. 2000. Lactational competence and involution of the mouse mammary gland require plasminogen. Development 127:4481−92

doi: 10.1242/dev.127.20.4481
[86]

Stein T, Morris JS, Davies CR, Weber-Hall SJ, Duffy MA, et al. 2004. Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3. Breast Cancer Research 6:R75−R91

doi: 10.1186/bcr753
[87]

Chapman RS, Lourenco PC, Tonner E, Flint DJ, Selbert S, et al. 1999. Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes & Development 13:2604−16

doi: 10.1101/gad.13.19.2604
[88]

Connelly L, Barham W, Pigg R, Saint-Jean L, Sherrill T, et al. 2010. Activation of nuclear factor kappa B in mammary epithelium promotes milk loss during mammary development and infection. Journal of Cellular Physiology 222:73−81

doi: 10.1002/jcp.21922
[89]

Pal B, Chen Y, Vaillant F, Jamieson P, Gordon L, et al. 2017. Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling. Nature Communications 8:1627

doi: 10.1038/s41467-017-01560-x
[90]

Pal B, Chen Y, Milevskiy MJG, Vaillant F, Prokopuk L, et al. 2021. Single cell transcriptome atlas of mouse mammary epithelial cells across development. Breast Cancer Research 23:69

doi: 10.1186/s13058-021-01445-4
[91]

Wang W, Wang S, Wang H, Zheng E, Wu Z, et al. 2024. Protein dynamic landscape during mouse mammary gland development from virgin to pregnant, lactating, and involuting stages. Journal of Agricultural and Food Chemistry 72:7546−57

doi: 10.1021/acs.jafc.3c09647
[92]

Fan Y, Jin L, He Z, Wei T, Luo T, et al. 2023. A cell transcriptomic profile provides insights into adipocytes of porcine mammary gland across development. Journal of Animal Science and Biotechnology 14:126

doi: 10.1186/s40104-023-00926-0
[93]

Kumar T, Nee K, Wei R, He S, Nguyen QH, et al. 2023. A spatially resolved single-cell genomic atlas of the adult human breast. Nature 620:181−91

doi: 10.1038/s41586-023-06252-9
[94]

Chung C-Y, Ma Z, Dravis C, Preissl S, Poirion O, et al. 2019. Single-Cell Chromatin Analysis of Mammary Gland Development Reveals Cell-State Transcriptional Regulators and Lineage Relationships. Cell Reports 29:495−510.e6

doi: 10.1016/j.celrep.2019.08.089
[95]

Kim U, Kim S, Kim N, Shin HY. 2022. Mammary-enriched transcription factors synergize to activate the wap super-enhancer for mammary gland development. International Journal of Molecular Sciences 23:11680

doi: 10.3390/ijms231911680
[96]

Regan JL, Smalley MJ. 2020. Integrating single-cell RNA-sequencing and functional assays to decipher mammary cell states and lineage hierarchies. NPJ Breast Cancer 6:32

doi: 10.1038/s41523-020-00175-8