[1]

Brusseau ML, Anderson RH, Guo B. 2020. PFAS concentrations in soils: background levels versus contaminated sites. Science of the Total Environment 740:140017

doi: 10.1016/j.scitotenv.2020.140017
[2]

Sepulvado JG, Blaine AC, Hundal LS, Higgins CP. 2011. Occurrence and fate of perfluorochemicals in soil following the land application of municipal biosolids. Environmental Science & Technology 45(19):8106−8112

doi: 10.1021/es103903d
[3]

Yoo H, Washington JW, Jenkins TM, Ellington JJ. 2011. Quantitative determination of perfluorochemicals and fluorotelomer alcohols in plants from biosolid-amended fields using LC/MS/MS and GC/MS. Environmental Science & Technology 45(19):7985−7990

doi: 10.1021/es102972m
[4]

Li F, Fang X, Zhou Z, Liao X, Zou J, et al. 2019. Adsorption of perfluorinated acids onto soils: kinetics, isotherms, and influences of soil properties. Science of The Total Environment 649: 504-514

doi: 10.1016/j.scitotenv.2018.08.209
[5]

Navarro I, de la Torre A, Sanz P, Porcel MÁ, Carbonell G, et al. 2018. Transfer of perfluorooctanesulfonate (PFOS), decabrominated diphenyl ether (BDE-209) and dechlorane plus (DP) from biosolid-amended soils to leachate and runoff water. Environmental Chemistry 15(4):195−204

doi: 10.1071/EN18032
[6]

Xiao F, Simcik MF, Halbach TR, Gulliver JS. 2015. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a US metropolitan area: migration and implications for human exposure. Water Research 72:64−74

doi: 10.1016/j.watres.2014.09.052
[7]

Wang W, Rhodes G, Zhang W, Yu X, Teppen BJ, et al. 2022. Implication of cation-bridging interaction contribution to sorption of perfluoroalkyl carboxylic acids by soils. Chemosphere 290:133224

doi: 10.1016/j.chemosphere.2021.133224
[8]

Oliver DP, Li Y, Orr R, Nelson P, Barnes M, et al. 2019. The role of surface charge and pH changes in tropical soils on sorption behavior of per- and polyfluoroalkyl substances (PFASs). Science of The Total Environment 673:197−206

doi: 10.1016/j.scitotenv.2019.04.055
[9]

Lyu Y, Wang BH, Du XQ, Guo B, Brusseau ML. 2022. Air-water interfacial adsorption of C4-C10 perfluorocarboxylic acids during transport in unsaturated porous media. Science of the Total Environment 831:154905

doi: 10.1016/j.scitotenv.2022.154905
[10]

Jin H, Zhang Y, Zhu L, Martin JW. 2015. Isomer profiles of perfluoroalkyl substances in water and soil surrounding a Chinese fluorochemical manufacturing park. Environmental Science & Technology 49(8):4946−4954

doi: 10.1021/acs.est.5b00212
[11]

Felizeter S, Jürling H, Kotthoff M, De Voogt P, McLachlan MS. 2020. Uptake of perfluorinated alkyl acids by crops: results from a field study. Environmental Science: Processes & Impacts 23(8):1158−1170

doi: 10.1039/d1em00166c
[12]

Wang W, Rhodes G, Ge J, Yu X, Li H. 2021. Uptake and accumulation of per- and polyfluoroalkyl substances in plants. Chemosphere 261:127584

doi: 10.1016/j.chemosphere.2020.127584
[13]

Krippner J, Falk S, Brunn H, Georgii S, Schubert S, et al. 2015. Accumulation potentials of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays). Journal of Agricultural and Food Chemistry 63(14):3646−3653

doi: 10.1021/acs.jafc.5b00012
[14]

Xiang L, Chen L, Yu LY, Yu PF, Zhao HM, et al. 2018. Genotypic variation and mechanism in uptake and translocation of perfluorooctanoic acid (PFOA) in lettuce (Lactuca sativa L.) cultivars grown in PFOA-polluted soils. Science of the Total Environment 636:999−1008

doi: 10.1016/j.scitotenv.2018.04.354
[15]

Lupton SJ, Smith DJ, Scholljegerdes E, Ivey S, Young W, et al. 2022. Plasma and skin per- and polyfluoroalkyl substance (PFAS) levels in dairy cattle with lifetime exposures to PFAS-contaminated drinking water and feed. Journal of Agricultural and Food Chemistry 70:15945−15954

doi: 10.1021/acs.jafc.2c06620
[16]

Mikkonen AT, Martin J, Upton RN, Barker AO, Brumley CM, et al. 2023. Spatio-temporal trends in livestock exposure to per- and polyfluoroalkyl substances (PFAS) inform risk assessment and management measures. Environmental Research 225:115518

doi: 10.1016/j.envres.2023.115518
[17]

Vestergren R, Orata F, Berger U, Cousins IT. 2013. Bioaccumulation of perfluoroalkyl acids in dairy cows in a naturally contaminated environment. Environmental Science and Pollution Research 20(11):7959−7969

doi: 10.1007/s11356-013-1722-x
[18]

Death C, Bell C, Champness D, Milne C, Reichman S, et al. 2021. Per- and polyfluoroalkyl substances (PFAS) in livestock and game species: a review. Science of the Total Environment 774:144795

doi: 10.1016/j.scitotenv.2020.144795
[19]

Lupton SJ, Dearfield KL, Johnston JJ, Wagner S, Huwe JK. 2015. Perfluorooctane sulfonate plasma half-life determination and long-term tissue distribution in beef cattle. Journal of Agricultural and Food Chemistry 63(51):10988−10994

doi: 10.1021/acs.jafc.5b04565
[20]

Kowalczyk J, Ehlers S, Fürst P, Schafft H, Lahrssen-Wiederholt M. 2012. Transfer of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from contaminated feed into milk and meat of sheep: pilot study. Archives of Environmental Contamination and Toxicology 63(2):288−298

doi: 10.1007/s00244-012-9759-2
[21]

Kowalczyk J, Ehlers S, Oberhausen A, Tischer M, Fürst P, et al. 2013. Absorption, distribution, and milk secretion of the perfluoroalkyl acids PFBS, PFHxS, PFOS, and PFOA by dairy cows fed naturally contaminated feed. Journal of Agricultural and Food Chemistry 61(12):2903−2912

doi: 10.1021/jf304680j
[22]

Sunderland EM, Hu XC, Dassuncao C, Tokranov AK, Wagner CC, et al. 2019. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. Journal of Exposure Science and Environmental Epidemiology 29(2):131−147

doi: 10.1038/s41370-018-0094-1