[1]

Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, et al. 2004. Lost at sea: where is all the plastic? Science 304:838

doi: 10.1126/science.1094559
[2]

Gong P, Xu H, Wang C, Chen Y, Guo L, et al. 2021. Persistent organic pollutant cycling in forests. Nature Reviews Earth & Environment 2:182−97

doi: 10.1038/s43017-020-00137-5
[3]

Borrelle SB, Ringma J, Law KL, Monnahan CC, Lebreton L, et al. 2020. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369:1515−18

doi: 10.1126/science.aba3656
[4]

Wang C, O'Connor D, Wang L, Wu WM, Luo J, et al. 2022. Microplastics in urban runoff: global occurrence and fate. Water Research 225:119129

doi: 10.1016/j.watres.2022.119129
[5]

Wang S, Gao L, Hou A, Xie K, Song X. 2021. Design, synthesis of novel bisazo disperse dyes: structure analysis and dyeing performance on PET. Dyes and Pigments 196:109761

doi: 10.1016/j.dyepig.2021.109761
[6]

Barrows APW, Cathey SE, Petersen CW. 2018. Marine environment microfiber contamination: global patterns and the diversity of microparticle origins. Environmental Pollution 237:275−84

doi: 10.1016/j.envpol.2018.02.062
[7]

Cheng H, Feng Y, Duan Z, Duan X, Zhao S, et al. 2021. Toxicities of microplastic fibers and granules on the development of zebrafish embryos and their combined effects with cadmium. Chemosphere 269:128677

doi: 10.1016/j.chemosphere.2020.128677
[8]

Qiao R, Deng Y, Zhang S, Wolosker MB, Zhu Q, et al. 2019. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish. Chemosphere 236:124334

doi: 10.1016/j.chemosphere.2019.07.065
[9]

Yang X, Man YB, Wong MH, Owen RB, Chow KL. 2022. Environmental health impacts of microplastics exposure on structural organization levels in the human body. Science of the Total Environment 825:154025

doi: 10.1016/j.scitotenv.2022.154025
[10]

Ergas M, Figueroa D, Paschke K, Urbina MA, Navarro JM, et al. 2023. Cellulosic and microplastic fibers in the Antarctic fish Harpagifer antarcticus and Sub-Antarctic Harpagifer bispinis. Marine Pollution Bulletin 194:115380

doi: 10.1016/j.marpolbul.2023.115380
[11]

Bai X, Li F, Ma L, Li C. 2022. Weathering of geotextiles under ultraviolet exposure: a neglected source of microfibers from coastal reclamation. Science of the Total Environment 804:150168

doi: 10.1016/j.scitotenv.2021.150168
[12]

Pinlova B, Nowack B. 2023. Characterization of fiber fragments released from polyester textiles during UV weathering. Environmental Pollution 322:121012

doi: 10.1016/j.envpol.2023.121012
[13]

Sun Y, Yuan J, Zhou T, Zhao Y, Yu F, et al. 2020. Laboratory simulation of microplastics weathering and its adsorption behaviors in an aqueous environment: a systematic review. Environmental Pollution 265:114864

doi: 10.1016/j.envpol.2020.114864
[14]

Qiu X, Ma S, Zhang J, Fang L, Guo X, et al. 2022. Dissolved organic matter promotes the aging process of polystyrene microplastics under dark and ultraviolet light conditions: the crucial role of reactive oxygen species. Environmental Science & Technology 56(14):10149−60

doi: 10.1021/acs.est.2c03309
[15]

Singh B, Sharma N. 2008. Mechanistic implications of plastic degradation. Polymer Degradation and Stability 93:561−84

doi: 10.1016/j.polymdegradstab.2007.11.008
[16]

Liu S, Huang W, Yang J, Xiong Y, Huang Z, et al. 2023. Formation of environmentally persistent free radicals on microplastics under UV irradiations. Journal of Hazardous Materials 453:131277

doi: 10.1016/j.jhazmat.2023.131277
[17]

Zha F, Dai J, Han Y, Liu P, Wang M, et al. 2023. Release of millions of micro(nano)plastic fragments from photooxidation of disposable plastic boxes. Science of the Total Environment 858:160044

doi: 10.1016/j.scitotenv.2022.160044
[18]

Wang X, Zheng H, Zhao J, Luo X, Wang Z, et al. 2020. Photodegradation elevated the toxicity of polystyrene microplastics to grouper (Epinephelus moara) through disrupting hepatic lipid homeostasis. Environmental Science & Technology 54:6202−12

doi: 10.1021/acs.est.9b07016
[19]

Zou W, Xia M, Jiang K, Cao Z, Zhang X, et al. 2020. Photo-oxidative degradation mitigated the developmental toxicity of polyamide microplastics to zebrafish larvae by modulating macrophage-triggered proinflammatory responses and apoptosis. Environmental Science & Technology 54(21):13888−98

doi: 10.1021/acs.est.0c05399
[20]

Shi Y, Liu P, Wu X, Shi H, Huang H, et al. 2021. Insight into chain scission and release profiles from photodegradation of polycarbonate microplastics. Water Research 195:116980

doi: 10.1016/j.watres.2021.116980
[21]

Zhao M, Huang L, Arulmani SRB, Yan J, Wu L, et al. 2022. Adsorption of different pollutants by using microplastic with different influencing factors and mechanisms in wastewater: a review. Nanomaterials 12:2256

doi: 10.3390/nano12132256
[22]

Pinlova B, Hufenus R, Nowack B. 2022. Systematic study of the presence of microplastic fibers during polyester yarn production. Journal of Cleaner Production 363:132247

doi: 10.1016/j.jclepro.2022.132247
[23]

Du W, Zheng J, Li W, Liu Z, Wang H, et al. 2022. Efficient recognition and automatic sorting technology of waste textiles based on online near infrared spectroscopy and convolutional neural network. Resources, Conservation and Recycling 180:106157

doi: 10.1016/j.resconrec.2022.106157
[24]

Ronda AC, Arias AH, Oliva AL, Marcovecchio JE. 2019. Synthetic microfibers in marine sediments and surface seawater from the Argentinean continental shelf and a Marine Protected Area. Marine Pollution Bulletin 149:110618

doi: 10.1016/j.marpolbul.2019.110618
[25]

Shi Y, Huang H, Zheng L, Tian Y, Gong Z, et al. 2023. Releases of microplastics and chemicals from nonwoven polyester fabric-based polyurethane synthetic leather by photoaging. Science of the Total Environment 902:166584

doi: 10.1016/j.scitotenv.2023.166584
[26]

Wu X, Zhao X, Chen R, Liu P, Liang W, et al. 2023. Size-dependent long-term weathering converting floating polypropylene macro- and microplastics into nanoplastics in coastal seawater environments. Water Research 242:120165

doi: 10.1016/j.watres.2023.120165
[27]

Wu X, Liu P, Shi H, Wang H, Huang H, et al. 2021. Photo aging and fragmentation of polypropylene food packaging materials in artificial seawater. Water Research 188:116456

doi: 10.1016/j.watres.2020.116456
[28]

Godlove IH. 1951. Improved color-difference formula, with applications to the perceptibility and acceptability of fadings. Journal of the Optical Society of America 41:760−72

doi: 10.1364/josa.41.000760
[29]

Moula ATMG, Hosen MD, Siddiquee MAB, Momin MA, Kaisar Z, et al. 2022. Effect of dye bath pH in dyeing of cotton knitted fabric with reactive dye (Remazol Yellow RR) in exhaust method: impact on color strength, chromatic values and fastness properties. Heliyon 8:e11246

doi: 10.1016/j.heliyon.2022.e11246
[30]

Du T, Shao S, Qian L, Meng R, Li T, et al. 2023. Effects of photochlorination on the physicochemical transformation of polystyrene nanoplastics: Mechanism and environmental fate. Water Research 243:120367

doi: 10.1016/j.watres.2023.120367
[31]

Hua Z, Guo K, Kong X, Lin S, Wu Z, et al. 2019. PPCP degradation and DBP formation in the solar/free chlorine system: Effects of pH and dissolved oxygen. Water Research 150:77−85

doi: 10.1016/j.watres.2018.11.041
[32]

Enfrin M, Lee J, Gibert Y, Basheer F, Kong L, et al. 2020. Release of hazardous nanoplastic contaminants due to microplastics fragmentation under shear stress forces. Journal of Hazardous Materials 384:121393

doi: 10.1016/j.jhazmat.2019.121393
[33]

Zhang H, Huang Y, Zhou W. 2022. Prediction of the exposure endpoint of textile color fastness to light. Journal of Physics: Conference Series 2390:012047

doi: 10.1088/1742-6596/2390/1/012047
[34]

Sang T, Wallis CJ, Hill G, Britovsek GJP. 2020. Polyethylene terephthalate degradation under natural and accelerated weathering conditions. European Polymer Journal 136:109873

doi: 10.1016/j.eurpolymj.2020.109873
[35]

Miranda MN, Sampaio MJ, Tavares PB, Silva AMT, Pereira MFR. 2021. Aging assessment of microplastics (LDPE, PET and uPVC) under urban environment stressors. Science of the Total Environment 796:148914

doi: 10.1016/j.scitotenv.2021.148914
[36]

Wang H, Liu P, Wang M, Wu X, Shi Y, et al. 2021. Enhanced phototransformation of atorvastatin by polystyrene microplastics: Critical role of aging. Journal of Hazardous Materials 408:124756

doi: 10.1016/j.jhazmat.2020.124756
[37]

Wu X, Zhao X, Chen R, Liu P, Liang W, et al. 2022. Wastewater treatment plants act as essential sources of microplastic formation in aquatic environments: a critical review. Water Research 221:118825

doi: 10.1016/j.watres.2022.118825
[38]

Shi Y, Zheng L, Huang H, Tian YC, Gong Z, et al. 2023. Formation of nano- and microplastics and dissolved chemicals during photodegradation of polyester base fabrics with polyurethane coating. Environmental Science & Technology 57(5):1894−906

doi: 10.1021/acs.est.2c05063
[39]

Fontmorin JM, Burgos Castillo RC, Tang WZ, Sillanpää M. 2016. Stability of 5,5-dimethyl-1-pyrroline-N-oxide as a spin-trap for quantification of hydroxyl radicals in processes based on Fenton reaction. Water Research 99:24−32

doi: 10.1016/j.watres.2016.04.053
[40]

Garcia-Segura S, Brillas E. 2017. Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 31:1−35

doi: 10.1016/j.jphotochemrev.2017.01.005
[41]

Ebrahimpour Z, Pliekhova O, Cabrera H, Abdelhamid M, Korte D, et al. 2021. Photodegradation mechanisms of reactive blue 19 dye under UV and simulated solar light irradiation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 252:119481

doi: 10.1016/j.saa.2021.119481
[42]

Zhong J, Yang B, Feng Y, Chen Y, Wang LG, et al. 2021. Enhanced photo–Fenton removal efficiency with core-shell magnetic resin catalyst for textile dyeing wastewater treatment. Water 13:968

doi: 10.3390/w13070968
[43]

Zhu K, Jia H, Zhao S, Xia T, Guo X, et al. 2019. Formation of environmentally persistent free radicals on microplastics under light irradiation. Environmental Science & Technology 53:8177−86

doi: 10.1021/acs.est.9b01474