[1]

Faust M, Timon B. 1995. Origin and dissemination of peach. In Horticultural Reviews, ed. Janick J. US: John Wiley & Sons, Inc. Volume 17. pp. 331−79 doi: 10.1002/9780470650585.ch10

[2]

Okie WR, Bacon T, Bassi D. 2008. Fresh market cultivar development. In The Peach: Botany, Production, and Uses, eds Layne DR, Bassi D. Oxfordshire, Cambridge: CABI International. pp. 139−74 doi: 10.1079/9781845933869.0139

[3]

Bonghi C, Ramina A, Ruperti B, Vidrih R, Tonutti P. 1999. Peach fruit ripening and quality in relation to picking time, and hypoxic and high CO2 short-term postharvest treatments. Postharvest Biology and Technology 16:213−22

doi: 10.1016/S0925-5214(99)00028-9
[4]

Fishman ML, Levaj B, Gillespie D, Scorza R. 1993. Changes in the physico-chemical properties of peach fruit pectin during on-tree ripening and storage. Journal of the American Society for Horticultural Science 118:343−49

doi: 10.21273/JASHS.118.3.343
[5]

Chen C. 2021. Peach cultivar releases and fruit trait distribution in the USDA-ARS Byron program. Acta Horticulturae 1304:29−36

doi: 10.17660/actahortic.2021.1304.4
[6]

Topp BL, Sherman WB, Raseira MCB. 2008. Low-chill cultivar development. In The Peach: Botany, Production, and Uses, eds Layne DR, Bassi D. Oxfordshire, Cambridge: CABI International. pp. 106−38 doi: 10.1079/9781845933869.0106

[7]

Clark JR, Moore JN, Perkins-Veazie P. 2005. 'White Rock' and 'White County' peaches. HortScience 40:1561−65

doi: 10.21273/HORTSCI.40.5.1561
[8]

Caruso T, Giovannini D, Liverani A. 1996. Rootstock influences the fruit mineral, sugar and organic acid content of a very early ripening peach cultivar. Journal of Horticultural Science 71:931−37

doi: 10.1080/14620316.1996.11515477
[9]

Pinto C, Reginato G, Mesa K, Shinya P, Díaz M, et al. 2016. Monitoring the flesh softening and the ripening of peach during the last phase of growth on-tree. HortScience 51:995−1000

doi: 10.21273/HORTSCI.51.8.995
[10]

Xi W, Zheng Q, Lu J, Quan J. 2017. Comparative analysis of three types of peaches: identification of the key individual characteristic flavor compounds by integrating consumers' acceptability with flavor quality. Horticultural Plant Journal 3:1−12

doi: 10.1016/j.hpj.2017.01.012
[11]

Byrne DH, Nikolic AN, Burns EE. 1991. Variability in sugars, acids, firmness, and color characteristics of 12 peach genotypes. Journal of the American Society for Horticultural Science 116:1004−6

doi: 10.21273/JASHS.116.6.1004
[12]

Chen C, Okie WR. 2020. 'Rich Joy' peach. HortScience 55:591−92

doi: 10.21273/HORTSCI14720-19
[13]

Chen C, Okie WR. 2020. 'Crimson Joy' peach. HortScience 55:972−73

doi: 10.21273/HORTSCI14983-20
[14]

Chen C, Okie WR. 2020. 'Liberty Joy' peach. HortScience 55:951−52

doi: 10.21273/HORTSCI14907-20
[15]

Chen C, Okie WR. 2024. 'May Joy' peach. HortScience 59:919−20

doi: 10.21273/HORTSCI17670-23
[16]

Chen C, Okie WR. 2024. 'Cardinal Joy' peach. HortScience 59:264−65

doi: 10.21273/HORTSCI17592-23
[17]

Okie WR. 1993. 'Goldprince' and 'Scarletpearl' peaches. HortScience 28:231

doi: 10.21273/HORTSCI.28.3.231
[18]

Okie WR, Ramming DW, Scorza R. 1985. Peach, nectarine, and other stone fruit breeding by the USDA in the last two decades. HortScience 20:633−41

doi: 10.21273/HORTSCI.20.4.633
[19]

Okie WR. 1997. USDA stone fruit breeding in the southeastern United States. Fruit Varieties Journal 51:211−17

[20]

Chen C, Bai J, Okie WR, Plotto A. 2016. Comparison of fruit characters and volatile components in peach-to-nectarine mutants. Euphytica 209:409−18

doi: 10.1007/s10681-016-1648-8
[21]

R Core Team. 2024. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria

[22]

Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67:1−48

doi: 10.18637/jss.v067.i01
[23]

Lenth RV. 2025. emmeans: estimated marginal means, aka least-squares means. R package version 1.10. 7

[24]

Lüdecke D, Ben-Shachar MS, Patil I, Waggoner P, Makowski D. 2021. performance: an R package for assessment, comparison, and testing of statistical models. Journal of Open Source Software 6:3139

doi: 10.21105/joss.03139
[25]

Hayama H, Tatsuki M, Ito A, Kashimura Y. 2006. Ethylene and fruit softening in the stony hard mutation in peach. Postharvest Biology and Technology 41:16−21

doi: 10.1016/j.postharvbio.2006.03.006
[26]

Wang X, Ding Y, Wang Y, Pan L, Niu L, et al. 2017. Genes involved in ethylene signal transduction in peach (Prunus persica) and their expression profiles during fruit maturation. Scientia Horticulturae 224:306−16

doi: 10.1016/j.scienta.2017.06.035
[27]

Ullah S, Khan AS, Malik AU, Shahid M. 2013. Cultivar and harvest location influence fruit softening and antioxidative activities of peach during ripening. International Journal of Agriculture and Biology 15:1059−66

[28]

Baccichet I, Chiozzotto R, Bassi D, Gardana C, Cirilli M, et al. 2021. Characterization of fruit quality traits for organic acids content and profile in a large peach germplasm collection. Scientia Horticulturae 278:109865

doi: 10.1016/j.scienta.2020.109865
[29]

Cano-Salazar J, Echeverría G, Crisosto CH, Lopez L. 2012. Cold-storage potential of four yellow-fleshed peach cultivars defined by their volatile compounds emissions, standard quality parameters, and consumer acceptance. Journal of Agricultural and Food Chemistry 60:1266−82

doi: 10.1021/jf204126m
[30]

Chen C. 2023. Fruit characteristics of the Joy peach cultivars. HortScience 58:428−32

doi: 10.21273/HORTSCI17056-22
[31]

Bussi C, Plenet D. 2012. Effects of centrifugal pruning on agronomic performance and fruit quality in a medium-maturing peach cultivar. European Journal of Horticultural Science 77:129−36

doi: 10.1079/ejhs.2012/3225265
[32]

Orazem P, Stampar F, Hudina M. 2011. Fruit quality of redhaven and royal glory peach cultivars on seven different rootstocks. Journal of Agricultural and Food Chemistry 59:9394−401

doi: 10.1021/jf2009588
[33]

Wang Q, Cao K, Cheng L, Li Y, Guo J, et al. 2022. Multi-omics approaches identify a key gene, PpTST1, for organic acid accumulation in peach. Horticulture Research 9:uhac026

doi: 10.1093/hr/uhac026
[34]

Eduardo I, Chietera G, Pirona R, Pacheco I, Troggio M, et al. 2013. Genetic dissection of aroma volatile compounds from the essential oil of peach fruit: QTL analysis and identification of candidate genes using dense SNP maps. Tree Genetics & Genomes 9:189−204

doi: 10.1007/s11295-012-0546-z
[35]

Aslam MM, Deng L, Wang X, Wang Y, Pan L, et al. 2019. Expression patterns of genes involved in sugar metabolism and accumulation during peach fruit development and ripening. Scientia Horticulturae 257:108633

doi: 10.1016/j.scienta.2019.108633
[36]

Etienne C, Rothan C, Moing A, Plomion C, Bodénès C, et al. 2002. Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theoretical and Applied Genetics 105:145−59

doi: 10.1007/s00122-001-0841-9