[1]

Nataly Echevarria Huaman R, Tian XJ. 2014. Energy related CO2 emissions and the progress on CCS projects: a review. Renewable and Sustainable Energy Reviews 31:368−385

doi: 10.1016/j.rser.2013.12.002
[2]

Lee CT, Mohammad Rozali NE, Van Fan Y, Klemeš JJ, Towprayoon S. 2018. Low-carbon emission development in asia: energy sector, waste management and environmental management system. Clean Technologies and Environmental Policy 20:443−449

doi: 10.1007/s10098-018-1512-8
[3]

Luo L, Wang J, Lv J, Liu Z, Sun T, et al. 2023. Carbon sequestration strategies in soil using biochar: advances, challenges, and opportunities. Environmental Science & Technology 57:11357−11372

doi: 10.1021/acs.est.3c02620
[4]

Mrunalini K, Behera B, Jayaraman S, Abhilash PC, Dubey PK, et al. 2022. Nature-based solutions in soil restoration for improving agricultural productivity. Land Degradation & Development 33:1269−1289

doi: 10.1002/ldr.4207
[5]

Aquije C, Schmidt HP, Draper K, Joseph S, Ladd B. 2022. Low tech biochar production could be a highly effective nature-based solution for climate change mitigation in the developing world. Plant and Soil 479:77−83

doi: 10.1007/s11104-021-05159-6
[6]

Xu Q, Zhang T, Niu Y, Mukherjee S, Abou-Elwafa SF, et al. 2024. A comprehensive review on agricultural waste utilization through sustainable conversion techniques, with a focus on the additives effect on the fate of phosphorus and toxic elements during composting process. Science of the Total Environment 942:173567

doi: 10.1016/j.scitotenv.2024.173567
[7]

Jakubus M, Černe M, Palčić I, Pasković I, Ban SG, et al. 2025. The application of sewage sludge-derived compost or biochar as a nature-based solution (NBS) for healthier soil. Sustainability 17:1630

doi: 10.3390/su17041630
[8]

Nan Q, Speth DR, Qin Y, Chi W, Milucka J, et al. 2025. Biochar application using recycled annual self straw reduces long-term greenhouse gas emissions from paddy fields with economic benefits. Nature Food 6:456−65

doi: 10.1038/s43016-025-01124-z
[9]

Shaheen SM, Natasha, Mosa A, El-Naggar A, Faysal Hossain M, et al. 2022. Manganese oxide-modified biochar: Production, characterization and applications for the removal of pollutants from aqueous environments - a review. Bioresource Technology 346:126581

doi: 10.1016/j.biortech.2021.126581
[10]

Subramanian P, Pakkiyam S, Pandian K, Chinnathambi S, Jayaraman M. 2025. Preparation and modification of prosopis juliflora biochar and pb (II) removal from aqueous solutions. Biomass Conversion and Biorefinery 15:421−435

doi: 10.1007/s13399-024-05575-5
[11]

Wei X, Luo M, Wang T, Yu S, Dong Y, et al. 2025. Preparation of biochar composite graphene oxide for the removal of boron in simulated fracturing flowback fluid. Arabian Journal for Science and Engineering 50:123−132

doi: 10.1007/s13369-024-09126-y
[12]

Fakhar A, Galgo SJC, Canatoy RC, Rafique M, Sarfraz R, et al. 2025. Advancing modified biochar for sustainable agriculture: a comprehensive review on characterization, analysis, and soil performance. Biochar 7:8

doi: 10.1007/s42773-024-00397-0
[13]

Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S. 2010. Sustainable biochar to mitigate global climate change. Nature Communications 1:56

doi: 10.1038/ncomms1053
[14]

Huang Y, Luo Y, Wu C, Xue S, Chen H, et al. 2025. Synergistic multi-metal stabilization of lead–zinc smelting contaminated soil by Ochrobactrum EEELCW01-loaded iron-modified biochar: performance and long-term efficacy. Biochar 7:58

doi: 10.1007/s42773-025-00441-7
[15]

Bano A, Aziz MK, Prasad B, Ravi R, Shah MP, et al. 2025. The multifaceted power of biochar: A review on its role in pollution control, sustainable agriculture, and circular economy. Environmental Chemistry and Ecotoxicology 7:286−304

doi: 10.1016/j.enceco.2025.01.004
[16]

Waheed A, Xu H, Qiao X, Aili A, Yiremaikebayi Y, et al. 2025. Biochar in sustainable agriculture and climate mitigation: mechanisms, challenges, and applications in the circular bioeconomy. Biomass and Bioenergy 193:107531

doi: 10.1016/j.biombioe.2024.107531
[17]

Zhou S, Yang X, Tran TK, Shen J, An C. 2025. Paving the way for biochar production, supply chain, and applications toward a sustainable future. Cleaner Waste Systems 10:100227

doi: 10.1016/j.clwas.2025.100227
[18]

Zhang T, Manafi Khajeh Pasha A, Mohammad Sajadi S, Jasim DJ, Nasajpour-Esfahani N, et al. 2024. Optimization of thermophysical properties of nanofluids using a hybrid procedure based on machine learning, multi-objective optimization, and multi-criteria decision-making. Chemical Engineering Journal 485:150059

doi: 10.1016/j.cej.2024.150059
[19]

Xie G, Zhu C, Li C, Fan Z, Wang B. 2025. Predicting the adsorption of ammonia nitrogen by biochar in water bodies using machine learning strategies: Model optimization and analysis of key characteristic variables. Environmental Research 267:120618

doi: 10.1016/j.envres.2024.120618
[20]

Gou J, Sajid GH, Sabri MM, El-Meligy M, El Hindi K, et al. 2025. Optimizing biochar yield and composition prediction with ensemble machine learning models for sustainable production. Ain Shams Engineering Journal 16:103209

doi: 10.1016/j.asej.2024.103209
[21]

Uppalapati S, Paramasivam P, Kilari N, Chohan JS, Kanti PK, et al. 2025. Precision biochar yield forecasting employing random forest and XGBoost with Taylor diagram visualization. Scientific Reports 15:7105

doi: 10.1038/s41598-025-91450-w
[22]

Li J, Chen Y, Wang C, Chen H, Gao Y, et al. 2025. Optimizing biochar for carbon sequestration: a synergistic approach using machine learning and natural language processing. Biochar 7:20

doi: 10.1007/s42773-024-00424-0
[23]

Ye P, Guo B, Qin H, Wang C, Liu Y, et al. 2025. The state-of-the-art review on biochar as green additives in cementitious composites: Performance, applications, machine learning predictions, and environmental and economic implications. Biochar 7:21

doi: 10.1007/s42773-024-00423-1
[24]

Yin R, Li X, Ning Y, Hu Q, Mao Y, et al. 2025. Machine learning unveils the role of biochar application in enhancing tea yield by mitigating soil acidification in tea plantations. Science of the Total Environment 965:178597

doi: 10.1016/j.scitotenv.2025.178597
[25]

Zhang Y, Lei B, Mahdaviarab A, Wang X, Liu Z. 2025. Robust biochar yield and composition prediction via uncertainty-aware ResNet-based autoencoder. Biochar 7:61

doi: 10.1007/s42773-025-00446-2
[26]

Yadav S, Rajput P, Balasubramanian P, Liu C, Li F, Zhang P. 2025. Machine learning-driven prediction of biochar adsorption capacity for effective removal of congo red dye. Carbon Research 4:11

doi: 10.1007/s44246-024-00168-3
[27]

Wang R, Zhang S, Chen H, He Z, Cao G, et al. 2023. Enhancing biochar-based nonradical persulfate activation using data-driven techniques. Environmental Science & Technology 57:4050−4059

doi: 10.1021/acs.est.2c07073
[28]

Zhang W, Chen R, Li J, Huang T, Wu B, et al. 2023. Synthesis optimization and adsorption modeling of biochar for pollutant removal via machine learning. Biochar 5:25

doi: 10.1007/s42773-023-00225-x
[29]

Zhang P, Zhang T, Zhang J, Liu H, Chicaiza-Ortiz C, et al. 2024. A machine learning assisted prediction of potential biochar and its applications in anaerobic digestion for valuable chemicals and energy recovery from organic waste. Carbon Neutrality 3:2

doi: 10.1007/s43979-023-00078-0
[30]

Hemati Matin N, Jalali M, Antoniadis V, Shaheen SM, Wang J, et al. 2020. Almond and walnut shell-derived biochars affect sorption-desorption, fractionation, and release of phosphorus in two different soils. Chemosphere 241:124888

doi: 10.1016/j.chemosphere.2019.124888
[31]

Zhang Y, Zhang T. 2022. Biowaste valorization to produce advance carbon material-hydrochar for potential application of Cr (VI) and Cd (II) adsorption in wastewater: A review. Water 14:3675

doi: 10.3390/w14223675
[32]

Xie S, Zhang T, Mishra A, Tiwari A, Bolan NS. 2022. Assessment of catalytic thermal hydrolysis of swine manure slurry as liquid fertilizer: Insights into nutrients and metals. Frontiers in Environmental Science 10:1005290

doi: 10.3389/fenvs.2022.1005290
[33]

Ahmed SF, Mehejabin F, Chowdhury AA, Almomani F, Khan NA, et al. 2024. Biochar produced from waste-based feedstocks: mechanisms, affecting factors, economy, utilization, challenges, and prospects. GCB Bioenergy 16:e13175

doi: 10.1111/gcbb.13175
[34]

Gabhane JW, Bhange VP, Patil PD, Bankar ST, Kumar S. 2020. Recent trends in biochar production methods and its application as a soil health conditioner: a review. SN Applied Sciences 2:1307

doi: 10.1007/s42452-020-3121-5
[35]

Ali A, Shaheen SM, Guo D, Li Y, Xiao R, et al. 2020. Apricot shell- and apple tree-derived biochar affect the fractionation and bioavailability of Zn and Cd as well as the microbial activity in smelter contaminated soil. Environmental Pollution 264:114773

doi: 10.1016/j.envpol.2020.114773
[36]

Afshar M, Mofatteh S. 2024. Biochar for a sustainable future: Environmentally friendly production and diverse applications. Results in Engineering 23:102433

doi: 10.1016/j.rineng.2024.102433
[37]

Wang Y, Hu Y, Zhao X, Wang S, Xing G. 2013. Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times. Energy & Fuels 27:5890−5899

doi: 10.1021/ef400972z
[38]

Liu WJ, Jiang H, Yu HQ. 2015. Development of biochar-based functional materials: toward a sustainable platform carbon material. Chemical Reviews 115:12251−12285

doi: 10.1021/acs.chemrev.5b00195
[39]

Xu J, Liu J, Ling P, Zhang X, Xu K, et al. 2020. Raman spectroscopy of biochar from the pyrolysis of three typical Chinese biomasses: a novel method for rapidly evaluating the biochar property. Energy 202:117644

doi: 10.1016/j.energy.2020.117644
[40]

He D, Luo Y, Zhu B. 2024. Feedstock and pyrolysis temperature influence biochar properties and its interactions with soil substances: Insights from a DFT calculation. Science of the Total Environment 922:171259

doi: 10.1016/j.scitotenv.2024.171259
[41]

Dayoub EB, Tóth Z, Soós G, Anda A. 2024. Chemical and physical properties of selected biochar types and a few application methods in agriculture. Agronomy 14:2540

doi: 10.3390/agronomy14112540
[42]

Mašek O, Buss W, Roy-Poirier A, Lowe W, Peters C, et al. 2018. Consistency of biochar properties over time and production scales: a characterisation of standard materials. Journal of Analytical and Applied Pyrolysis 132:200−210

doi: 10.1016/j.jaap.2018.02.020
[43]

Yu D, Niu J, Zhong L, Chen K, Wang G, et al. 2022. Biochar raw material selection and application in the food chain: a review. Science of the Total Environment 836:155571

doi: 10.1016/j.scitotenv.2022.155571
[44]

Kuryntseva P, Karamova K, Galitskaya P, Selivanovskaya S, Evtugyn G. 2023. Biochar functions in soil depending on feedstock and pyrolyzation properties with particular emphasis on biological properties. Agriculture 13:2003

doi: 10.3390/agriculture13102003
[45]

Saletnik B, Zaguła G, Bajcar M, Tarapatskyy M, Bobula G, et al. 2019. Biochar as a multifunctional component of the environment—a review. Applied Sciences 9:1139

doi: 10.3390/app9061139
[46]

Wang Z, Wei N, Yang F, Hanikai D, Li S, et al. 2024. The effect of remediation of soil co-contaminated by Cu and Cd in a semi-arid area with sewage sludge-derived biochar. Sustainability 16:4961

doi: 10.3390/su16124961
[47]

Vavrincová L, Pipíška M, Urbanová J, Frišták V, Horník M, et al. 2024. Sewage sludge biochar as a sustainable and water-safe substrate additive for extensive green roofs. Sustainable Chemistry and Pharmacy 39:101604

doi: 10.1016/j.scp.2024.101604
[48]

Geng Y, Qin P, Lu Y, Sun Y, Zhang J, et al. 2025. Comparative effects of biochars from different feedstocks on the desiccation process of loess. Bulletin of Engineering Geology and the Environment 84:137

doi: 10.1007/s10064-025-04153-x
[49]

Rago YP, Surroop D, Mohee R. 2018. Assessing the potential of biofuel (biochar) production from food wastes through thermal treatment. Bioresource Technology 248:258−264

doi: 10.1016/j.biortech.2017.06.108
[50]

Liu J, Huang S, Chen K, Wang T, Mei M, et al. 2020. Preparation of biochar from food waste digestate: pyrolysis behavior and product properties. Bioresource Technology 302:122841

doi: 10.1016/j.biortech.2020.122841
[51]

Igalavithana AD, Choi SW, Dissanayake PD, Shang J, Wang CH, et al. 2020. Gasification biochar from biowaste (food waste and wood waste) for effective CO2 adsorption. Journal of Hazardous Materials 391:121147

doi: 10.1016/j.jhazmat.2019.121147
[52]

Yadav S, Singh D. 2023. Assessment of biochar developed via torrefaction of food waste as feedstock for steam gasification to produce hydrogen rich gas. Carbon Research 2:34

doi: 10.1007/s44246-023-00065-1
[53]

Zhou J, Deng Q, Chen Q, Chu B, Li Y, et al. 2024. Waste-green infrastructure nexus: green roof promotion by digestate and digestate biochar from food waste. Bioresource Technology 402:130845

doi: 10.1016/j.biortech.2024.130845
[54]

Pradhan S, Parthasarathy P, MacKey HR, Al-Ansari T, McKay G. 2024. Food waste biochar: a sustainable solution for agriculture application and soil–water remediation. Carbon Research 3:41

doi: 10.1007/s44246-024-00123-2
[55]

Pradhan S, Parthasarathy P, MacKey HR, Al-Ansari T, McKay G. 2024. Optimization of peapod peel biochar amendment for sustainable agriculture by surface response methodology towards water-food-environment nexus. Chemical Engineering Journal 498:155243

doi: 10.1016/j.cej.2024.155243
[56]

Tomczyk A, Sokołowska Z, Boguta P. 2020. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology 19:191−215

doi: 10.1007/s11157-020-09523-3
[57]

Ginebra M, Muñoz C, Calvelo-Pereira R, Doussoulin M, Zagal E. 2022. Biochar impacts on soil chemical properties, greenhouse gas emissions and forage productivity: a field experiment. Science of the Total Environment 806:150465

doi: 10.1016/j.scitotenv.2021.150465
[58]

He Y, Zhao X, Zhu S, Yuan L, Li X, et al. 2023. Conversion of swine manure into biochar for soil amendment: efficacy and underlying mechanism of dissipating antibiotic resistance genes. Science of the Total Environment 871:162046

doi: 10.1016/j.scitotenv.2023.162046
[59]

Li Y, Kumar Awasthi M, Sindhu R, Binod P, Zhang Z, et al. 2023. Biochar preparation and evaluation of its effect in composting mechanism: a review. Bioresource Technology 384:129329

doi: 10.1016/j.biortech.2023.129329
[60]

Pan X, Gu Z, Chen W, Li Q. 2021. Preparation of biochar and biochar composites and their application in a fenton-like process for wastewater decontamination: a review. Science of the Total Environment 754:142104

doi: 10.1016/j.scitotenv.2020.142104
[61]

Qambrani NA, Rahman MM, Won S, Shim S, Ra C. 2017. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: a review. Renewable and Sustainable Energy Reviews 79:255−273

doi: 10.1016/j.rser.2017.05.057
[62]

Wang L, Ok YS, Tsang DCW, Alessi DS, Rinklebe J, et al. 2020. New trends in biochar pyrolysis and modification strategies: Feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment. Soil Use and Management 36:358−386

doi: 10.1111/sum.12592
[63]

Mkhwanazi Z, Isa YM. 2023. Production of biocoal from wastewater sludge and sugarcane bagasse using hydrothermal carbonization. Biofuels, Bioproducts and Biorefining 17:389−402

doi: 10.1002/bbb.2447
[64]

Yan T, Zhang T, Wang S, Andrea K, Peng H, et al. 2023. Multivariate and multi-interface insights into carbon and energy recovery and conversion characteristics of hydrothermal carbonization of biomass waste from duck farm. Waste Management 170:154−165

doi: 10.1016/j.wasman.2023.08.009
[65]

Zhang Z, Yan T, Zhang T, Zhang Z, Wang W, et al. 2024. Volatile fatty acid release and metal ion concentration in hydrothermal carbonization liquid. Journal of Analytical and Applied Pyrolysis 183:106815

doi: 10.1016/j.jaap.2024.106815
[66]

Özçimen D, İnan B, Koçer AT, Bostyn S, Gökalp İ. 2022. Hydrothermal carbonization processes applied to wet organic waste streams. International Journal of Energy Research 46:16109−16126

doi: 10.1002/er.8304
[67]

Khalaf N, Leahy Jj, Kwapinski W. 2023. Phosphorus recovery from hydrothermal carbonization of organic waste: A review. Journal of Chemical Technology & Biotechnology 98:2365−2377

doi: 10.1002/jctb.7475
[68]

Ge X, Zhang T. 2023. Changes in inorganic and organic matters in processed water from hydrothermal-treated biogas slurry. Materials Science for Energy Technologies 6:145−157

doi: 10.1016/j.mset.2022.12.002
[69]

He X, Wang Y, Zhang Y, Wang C, Yu J, et al. 2023. The potential for livestock manure valorization and phosphorus recovery by hydrothermal technology - a critical review. Materials Science for Energy Technologies 6:94−104

doi: 10.1016/j.mset.2022.11.008
[70]

Su X, Zhang T, Zhao J, Mukherjee S, Alotaibi NM, et al. 2024. Phosphorus fraction in hydrochar from co-hydrothermal carbonization of swine manure and rice straw: an optimization analysis based on response surface methodology. Water 16:2208

doi: 10.3390/w16152208
[71]

Xie S, Zhang T, You S, Mukherjee S, Pu M, et al. 2025. Applied machine learning for predicting the properties and carbon and phosphorus fate of pristine and engineered hydrochar. Biochar 7:19

doi: 10.1007/s42773-024-00404-4
[72]

Dhull SB, Rose PK, Rani J, Goksen G, Bains A. 2024. Food waste to hydrochar: a potential approach towards the sustainable development goals, carbon neutrality, and circular economy. Chemical Engineering Journal 490:151609

doi: 10.1016/j.cej.2024.151609
[73]

Xie S, He X, Ali Alshehri M, Abou-Elwafa SF, Zhang T. 2024. Elevated effect of hydrothermal treatment on phosphorus transition between solid-liquid phase in swine manure. Results in Engineering 24:102887

doi: 10.1016/j.rineng.2024.102887
[74]

Ahmed MB, Zhou JL, Ngo HH, Guo W. 2016. Insight into biochar properties and its cost analysis. Biomass and Bioenergy 84:76−86

doi: 10.1016/j.biombioe.2015.11.002
[75]

Schimmelpfennig S, Glaser B. 2012. One step forward toward characterization: some important material properties to distinguish biochars. Journal of Environmental Quality 41:1001−1013

doi: 10.2134/jeq2011.0146
[76]

Nartey OD, Zhao B. 2014. Biochar preparation, characterization, and adsorptive capacity and its effect on bioavailability of contaminants: an overview. Advances in Materials Science and Engineering 2014:715398

doi: 10.1155/2014/715398
[77]

Liu G, Xu Q, Abou-Elwafa SF, Ali Alshehri M, Zhang T. 2024. Hydrothermal carbonization technology for wastewater treatment under the "Dual Carbon" goals: current status, trends, and challenges. Water 16:1749

doi: 10.3390/w16121749
[78]

Wang P, Wang S, Chen F, Zhang T, Kong W. 2024. Preparation of two types plant biochars and application in soil quality improvement. Science of the Total Environment 906:167334

doi: 10.1016/j.scitotenv.2023.167334
[79]

Manolikaki II, Mangolis A, Diamadopoulos E. 2016. The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils. Journal of Environmental Management 181:536−543

doi: 10.1016/j.jenvman.2016.07.012
[80]

Madusari S, Jamari SS, Nordin NIAA, Bindar Y, Prakoso T, et al. 2023. Hybrid hydrothermal carbonization and ultrasound technology on oil palm biomass for hydrochar production. ChemBioEng Reviews 10:37−54

doi: 10.1002/cben.202200014
[81]

Wen H, Li J, Wang X, Mao W, He Y, et al. 2025. Comparative study on combustion characteristics of biomass digestate-derived pyrochar and hydrochar: Insights from structural composition and oxygen-containing groups. Fuel 389:134627

doi: 10.1016/j.fuel.2025.134627
[82]

Zhang X, Zheng H, Wu J, Chen W, Chen Y, et al. 2021. Physicochemical and adsorption properties of biochar from biomass-based pyrolytic polygeneration: effects of biomass species and temperature. Biochar 3:657−670

doi: 10.1007/s42773-021-00102-5
[83]

Yang J, Zhang Z, Wang J, Zhao X, Zhao Y, et al. 2023. Pyrolysis and hydrothermal carbonization of biowaste: A comparative review on the conversion pathways and potential applications of char product. Sustainable Chemistry and Pharmacy 33:101106

doi: 10.1016/j.scp.2023.101106
[84]

Yaashikaa PR, Kumar PS, Varjani S, Saravanan A. 2020. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports 28:e00570

doi: 10.1016/j.btre.2020.e00570
[85]

Tan XF, Zhu SS, Wang RP, Chen YD, Show PL, et al. 2021. Role of biochar surface characteristics in the adsorption of aromatic compounds: pore structure and functional groups. Chinese Chemical Letters 32:2939−2946

doi: 10.1016/j.cclet.2021.04.059
[86]

Elnour AY, Alghyamah AA, Shaikh HM, Poulose AM, Al-Zahrani SM, et al. 2019. Effect of pyrolysis temperature on biochar microstructural evolution, physicochemical characteristics, and its influence on biochar/polypropylene composites. Applied Sciences 9:1149

doi: 10.3390/app9061149
[87]

Srocke F, Han L, Dutilleul P, Xiao X, Smith DL, et al. 2021. Synchrotron X-ray microtomography and multifractal analysis for the characterization of pore structure and distribution in softwood pellet biochar. Biochar 3:671−686

doi: 10.1007/s42773-021-00104-3
[88]

Uday V, Harikrishnan PS, Deoli K, Zitouni F, Mahlknecht J, et al. 2022. Current trends in production, morphology, and real-world environmental applications of biochar for the promotion of sustainability. Bioresource Technology 359:127467

doi: 10.1016/j.biortech.2022.127467
[89]

Zhang J, Lü F, Zhang H, Shao L, Chen D, et al. 2015. Multiscale visualization of the structural and characteristic changes of sewage sludge biochar oriented towards potential agronomic and environmental implication. Scientific Reports 5:9406

doi: 10.1038/srep09406
[90]

Yi Y, Huang Z, Lu B, Xian J, Tsang EP, et al. 2020. Magnetic biochar for environmental remediation: a review. Bioresource Technology 298:122468

doi: 10.1016/j.biortech.2019.122468
[91]

Liu Z, Xu Z, Xu L, Buyong F, Chay TC, et al. 2022. Modified biochar: Synthesis and mechanism for removal of environmental heavy metals. Carbon Research 1:8

doi: 10.1007/s44246-022-00007-3
[92]

Wang L, Ok YS, Tsang DCW, Alessi DS, Rinklebe J, et al. 2022. Biochar composites: Emerging trends, field successes and sustainability implications. Soil Use and Management 38:14−38

doi: 10.1111/sum.12731
[93]

Qu J, Meng Q, Peng W, Shi J, Dong Z, et al. 2023. Application of functionalized biochar for adsorption of organic pollutants from environmental media: Synthesis strategies, removal mechanisms and outlook. Journal of Cleaner Production 423:138690

doi: 10.1016/j.jclepro.2023.138690
[94]

Yameen MZ, Naqvi SR, Juchelková D, Khan MNA. 2024. Harnessing the power of functionalized biochar: progress, challenges, and future perspectives in energy, water treatment, and environmental sustainability. Biochar 6:25

doi: 10.1007/s42773-024-00316-3
[95]

Yang Y, Li G, Yue X, Zhang K, Zhang Z, et al. 2024. Advances in biochar composites for environmental sustainability. Advanced Composites and Hybrid Materials 8:74

doi: 10.1007/s42114-024-01181-1
[96]

Hamid Y, Liu L, Usman M, Naidu R, Haris M, et al. 2022. Functionalized biochars: Synthesis, characterization, and applications for removing trace elements from water. Journal of Hazardous Materials 437:129337

doi: 10.1016/j.jhazmat.2022.129337
[97]

Wang J, Wang S. 2019. Preparation, modification and environmental application of biochar: a review. Journal of Cleaner Production 227:1002−1022

doi: 10.1016/j.jclepro.2019.04.282
[98]

Dai L, Lu Q, Zhou H, Shen F, Liu Z, et al. 2021. Tuning oxygenated functional groups on biochar for water pollution control: a critical review. Journal of Hazardous Materials 420:126547

doi: 10.1016/j.jhazmat.2021.126547
[99]

Premchand P, Demichelis F, Galletti C, Chiaramonti D, Bensaid S, et al. 2024. Enhancing biochar production: a technical analysis of the combined influence of chemical activation (KOH and NaOH) and pyrolysis atmospheres (N2/CO2) on yields and properties of rice husk-derived biochar. Journal of Environmental Management 370:123034

doi: 10.1016/j.jenvman.2024.123034
[100]

Venkatachalam CD, Sekar S, Sengottian M, Ravichandran SR, Bhuvaneshwaran P. 2023. A critical review of the production, activation, and morphological characteristic study on functionalized biochar. Journal of Energy Storage 67:107525

doi: 10.1016/j.est.2023.107525
[101]

Xie Q, Yang X, Xu K, Chen Z, Sarkar B, et al. 2020. Conversion of biochar to sulfonated solid acid catalysts for spiramycin hydrolysis: Insights into the sulfonation process. Environmental Research 188:109887

doi: 10.1016/j.envres.2020.109887
[102]

Xiong X, Yu IKM, Chen SS, Tsang DCW, Cao L, et al. 2018. Sulfonated biochar as acid catalyst for sugar hydrolysis and dehydration. Catalysis Today 314:52−61

doi: 10.1016/j.cattod.2018.02.034
[103]

Bouafina K, Belferdi F, Bouremmad F. 2025. Sulfonated biochar derived from eucalyptus bark as natural catalyst in the biginelli reaction. Russian Journal of General Chemistry 95:663−670

doi: 10.1134/S1070363224613048
[104]

Zhang J, Zhang X, Li X, Song Z, Shao J, et al. 2024. Prediction of CO2 adsorption of biochar under KOH activation via machine learning. Carbon Capture Science & Technology 13:100309

doi: 10.1016/j.ccst.2024.100309
[105]

Liu QH, Qiu YH, Yang ZM. 2025. KOH activation increased biochar's capacity to regulate electron transfer and promote methanogenesis. Energy 322:135650

doi: 10.1016/j.energy.2025.135650
[106]

Xu X, Zheng Y, Gao B, Cao X. 2019. N-doped biochar synthesized by a facile ball-milling method for enhanced sorption of CO2 and reactive red. Chemical Engineering Journal 368:564−572

doi: 10.1016/j.cej.2019.02.165
[107]

Zhang J, Huang D, Shao J, Zhang X, Yang H, et al. 2022. Activation-free synthesis of nitrogen-doped biochar for enhanced adsorption of CO2. Journal of Cleaner Production 355:131642

doi: 10.1016/j.jclepro.2022.131642
[108]

Guy Laurent Zanli BL, Tang W, Chen J. 2022. N-doped and activated porous biochar derived from cocoa shell for removing norfloxacin from aqueous solution: Performance assessment and mechanism insight. Environmental Research 214:113951

doi: 10.1016/j.envres.2022.113951
[109]

Zhao J, Jiang Y, Chen X, Wang C, Nan H. 2025. Unlocking the potential of element-doped biochar: from tailored synthesis to multifunctional applications in environment and energy. Biochar 7:77

doi: 10.1007/s42773-025-00467-x
[110]

Rana P, Soni V, Sharma S, Poonia K, Patial S, et al. 2025. Harnessing nitrogen doped magnetic biochar for efficient antibiotic adsorption and degradation. Journal of Industrial and Engineering Chemistry 148:174−195

doi: 10.1016/j.jiec.2025.01.025
[111]

Yao Y, Liu X, Hu H, Tang Y, Hu H, et al. 2022. Synthesis and characterization of iron-nitrogen-doped biochar catalysts for organic pollutant removal and hexavalent chromium reduction. Journal of Colloid and Interface Science 610:334−346

doi: 10.1016/j.jcis.2021.11.187
[112]

Sun Y, Yu IKM, Tsang DCW, Cao X, Lin D, et al. 2019. Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater. Environment International 124:521−532

doi: 10.1016/j.envint.2019.01.047
[113]

Zhang P, O'Connor D, Wang Y, Jiang L, Xia T, et al. 2020. A green biochar/iron oxide composite for methylene blue removal. Journal of Hazardous Materials 384:121286

doi: 10.1016/j.jhazmat.2019.121286
[114]

Inyang M, Gao B, Zimmerman A, Zhang M, Chen H. 2014. Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites. Chemical Engineering Journal 236:39−46

doi: 10.1016/j.cej.2013.09.074
[115]

Atinafu DG, Wi S, Yun BY, Kim S. 2021. Engineering biochar with multiwalled carbon nanotube for efficient phase change material encapsulation and thermal energy storage. Energy 216:119294

doi: 10.1016/j.energy.2020.119294
[116]

Rachitha P, Kyathegowdana Lakshmana Gowda N, Sagar N, Sunayana N, Uzma M, et al. 2023. Risk management, regulatory aspects, environmental challenges and future perspectives of functionalized carbon nanostructures. In Handbook of Functionalized Carbon Nanostructures: From Synthesis Methods to Applications, eds. Barhoum A, Deshmukh K. Cham: Springer International Publishing. pp. 1−41 10.1007/978-3-031-14955-9_74-1

[117]

Luo D, Wang L, Nan H, Cao Y, Wang H, et al. 2023. Phosphorus adsorption by functionalized biochar: A review. Environmental Chemistry Letters 21:497−524

doi: 10.1007/s10311-022-01519-5
[118]

Oral B, Coşgun A, Günay ME, Yıldırım R. 2024. Machine learning-based exploration of biochar for environmental management and remediation. Journal of Environmental Management 360:121162

doi: 10.1016/j.jenvman.2024.121162
[119]

Coşgun A, Oral B, Günay ME, Yıldırım R. 2024. Machine learning–based analysis of sustainable biochar production processes. BioEnergy Research 17:2311−2327

doi: 10.1007/s12155-024-10796-7
[120]

Babaahmadi V, Pourhosseini SEM, Norouzi O, Naderi HR. 2023. Designing 3D ternary hybrid composites composed of graphene, biochar and manganese dioxide as high-performance supercapacitor electrodes. Nanomaterials 13:1866

doi: 10.3390/nano13121866
[121]

Cheng A, He Y, Liu X, He C. 2024. Honeycomb-like biochar framework coupled with Fe3O4/FeS nanoparticles as efficient heterogeneous fenton catalyst for phenol degradation. Journal of Environmental Sciences 136:390−399

doi: 10.1016/j.jes.2022.08.037
[122]

Wang Y, Zhu X, Feng D, Hodge AK, Hu L, et al. 2019. Biochar-supported FeS/Fe3O4 composite for catalyzed fenton-type degradation of ciprofloxacin. Catalysts 9:1062

doi: 10.3390/catal9121062
[123]

Li H, Tang M, Huang X, Wang L, Liu Q, et al. 2023. An efficient biochar adsorbent for CO2 capture: combined experimental and theoretical study on the promotion mechanism of N-doping. Chemical Engineering Journal 466:143095

doi: 10.1016/j.cej.2023.143095
[124]

Wu M, Lu J, Zhang Y, Ling Z, Lu R, et al. 2025. Chitosan hydrogel membrane embedded by metal-modified biochars for slow-release fertilizers. International Journal of Biological Macromolecules 306:141296

doi: 10.1016/j.ijbiomac.2025.141296
[125]

Chen Q, Zhang Y, Xia H, Liu R, Wang H. 2024. Fabrication of two novel amino-functionalized and starch-coated CuFe2O4-modified magnetic biochar composites and their application in removing Pb2+ and Cd2+ from wastewater. International Journal of Biological Macromolecules 258:128973

doi: 10.1016/j.ijbiomac.2023.128973
[126]

Osman AI, Fawzy S, Farghali M, El-Azazy M, Elgarahy AM, et al. 2022. Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. Environmental Chemistry Letters 20:2385−2485

doi: 10.1007/s10311-022-01424-x
[127]

Yuan P, Wang J, Pan Y, Shen B, Wu C. 2019. Review of biochar for the management of contaminated soil: preparation, application and prospect. The Science of the Total Environment 659:473−490

doi: 10.1016/j.scitotenv.2018.12.400
[128]

He M, Xu Z, Hou D, Gao B, Cao X, et al. 2022. Waste-derived biochar for water pollution control and sustainable development. Nature Reviews Earth & Environment 3:444−460

doi: 10.1038/s43017-022-00306-8
[129]

Sizmur T, Fresno T, Akgül G, Frost H, Moreno-Jiménez E. 2017. Biochar modification to enhance sorption of inorganics from water. Bioresource Technology 246:34−47

doi: 10.1016/j.biortech.2017.07.082
[130]

Murtaza G, Ahmed Z, Valipour M, Ali I, Usman M, et al. 2024. Recent trends and economic significance of modified/functionalized biochars for remediation of environmental pollutants. Scientific Reports 14:217

doi: 10.1038/s41598-023-50623-1
[131]

Hao H, Jing YD, Ju WL, Shen L, Cao YQ. 2017. Different types of biochar: effect of aging on the Cu(II) adsorption behavior. Desalination and Water Treatment 95:227−233

doi: 10.5004/dwt.2017.21524
[132]

Li X, Wang C, Zhang J, Liu J, Liu B, et al. 2020. Preparation and application of magnetic biochar in water treatment: a critical review. Science of The Total Environment 711:134847

doi: 10.1016/j.scitotenv.2019.134847
[133]

Cha JS, Park SH, Jung SC, Ryu C, Jeon JK, et al. 2016. Production and utilization of biochar: a review. Journal of Industrial and Engineering Chemistry 40:1−15

doi: 10.1016/j.jiec.2016.06.002
[134]

Kong F, Liu J, Xiang Z, Fan W, Liu J, et al. 2024. Degradation of water pollutants by biochar combined with advanced oxidation: A systematic review. Water 16:875

doi: 10.3390/w16060875
[135]

Kamali M, Appels L, Kwon EE, Aminabhavi TM, Dewil R. 2021. Biochar in water and wastewater treatment - a sustainability assessment. Chemical Engineering Journal 420:129946

doi: 10.1016/j.cej.2021.129946
[136]

Jiang T, Wang B, Gao B, Cheng N, Feng Q, et al. 2023. Degradation of organic pollutants from water by biochar-assisted advanced oxidation processes: mechanisms and applications. Journal of Hazardous Materials 442:130075

doi: 10.1016/j.jhazmat.2022.130075
[137]

Vasseghian Y, Nadagouda MM, Aminabhavi TM. 2024. Biochar-enhanced bioremediation of eutrophic waters impacted by algal blooms. Journal of Environmental Management 367:122044

doi: 10.1016/j.jenvman.2024.122044
[138]

Kończak M, Huber M. 2022. Application of the engineered sewage sludge-derived biochar to minimize water eutrophication by removal of ammonium and phosphate ions from water. Journal of Cleaner Production 331:129994

doi: 10.1016/j.jclepro.2021.129994
[139]

Wang Z, Sedighi M, Lea-Langton A. 2020. Filtration of microplastic spheres by biochar: removal efficiency and immobilisation mechanisms. Water Research 184:116165

doi: 10.1016/j.watres.2020.116165
[140]

Ganie ZA, Khandelwal N, Tiwari E, Singh N, Darbha GK. 2021. Biochar-facilitated remediation of nanoplastic contaminated water: Effect of pyrolysis temperature induced surface modifications. Journal of Hazardous Materials 417:126096

doi: 10.1016/j.jhazmat.2021.126096
[141]

Wan Z, Sun Y, Tsang DCW, Yu IKM, Fan J, et al. 2019. A sustainable biochar catalyst synergized with copper heteroatoms and CO2 for singlet oxygenation and electron transfer routes. Green Chemistry 21:4800−4814

doi: 10.1039/C9GC01843C
[142]

Anfar Z, Zbair M, Ait Ahsiane H, Jada A, El Alem N. 2020. Microwave assisted green synthesis of Fe2O3/biochar for ultrasonic removal of nonsteroidal anti-inflammatory pharmaceuticals. RSC Advances 10:11371−11380

doi: 10.1039/D0RA00617C
[143]

Negi M, Thankachan V, Rajeev A, Vairamuthu M, Arundhathi S, et al. 2025. Clean and green bamboo magic: recent advances in heavy metal removal from water by bamboo adsorbents. Water 17:454

doi: 10.3390/w17030454
[144]

Yang Q, Wang X, Luo W, Sun J, Xu Q, et al. 2018. Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge. Bioresource Technology 247:537−544

doi: 10.1016/j.biortech.2017.09.136
[145]

Saeed T, Yasmin N, Sun G, Hasnat A. 2019. The use of biochar and crushed mortar in treatment wetlands to enhance the removal of nutrients from sewage. Environmental Science and Pollution Research 26:586−599

doi: 10.1007/s11356-018-3637-z
[146]

Zhao L, Sun ZF, Pan XW, Tan JY, Yang SS, et al. 2023. Sewage sludge derived biochar for environmental improvement: advances, challenges, and solutions. Water Research X 18:100167

doi: 10.1016/j.wroa.2023.100167
[147]

Zhang Y, He M, Wang L, Yan J, Ma B, et al. 2022. Biochar as construction materials for achieving carbon neutrality. Biochar 4:59

doi: 10.1007/s42773-022-00182-x
[148]

Barbhuiya S, Bhusan Das B, Kanavaris F. 2024. Biochar-concrete: a comprehensive review of properties, production and sustainability. Case Studies in Construction Materials 20:e02859

doi: 10.1016/j.cscm.2024.e02859
[149]

Zhao Z, El-Naggar A, Kau J, Olson C, Tomlinson D, et al. 2024. Biochar affects compressive strength of portland cement composites: a meta-analysis. Biochar 6:21

doi: 10.1007/s42773-024-00309-2
[150]

Papadopoulou K, Ainali NM, Mašek O, Bikiaris DN. 2024. Biochar as a UV stabilizer: its impact on the photostability of poly(butylene succinate) biocomposites. Polymers 16:3080

doi: 10.3390/polym16213080
[151]

Vernardou D, Psaltakis G, Tsubota T, Katsarakis N, Kalderis D. 2024. Challenges and perspectives of biochar anodes for lithium-ion batteries. Future Batteries 4:100011

doi: 10.1016/j.fub.2024.100011
[152]

Ahmad Bhat S, Kuriqi A, Dar MUD, Bhat O, Sammen SS, et al. 2022. Application of biochar for improving physical, chemical, and hydrological soil properties: a systematic review. Sustainability 14:11104

doi: 10.3390/su141711104
[153]

Shaheen SM, Mosa A, Natasha, Arockiam Jeyasundar PGS, Hassan NEE, et al. 2023. Pros and cons of biochar to soil potentially toxic element mobilization and phytoavailability: Environmental implications. Earth Systems and Environment 7:321−345

doi: 10.1007/s41748-022-00336-8
[154]

Ndede EO, Kurebito S, Idowu O, Tokunari T, Jindo K. 2022. The potential of biochar to enhance the water retention properties of sandy agricultural soils. Agronomy 12:311

doi: 10.3390/agronomy12020311
[155]

Leng L, Huang H. 2018. An overview of the effect of pyrolysis process parameters on biochar stability. Bioresource Technology 270:627−642

doi: 10.1016/j.biortech.2018.09.030
[156]

Nan H, Mašek O, Yang F, Xu X, Qiu H, et al. 2022. Minerals: A missing role for enhanced biochar carbon sequestration from the thermal conversion of biomass to the application in soil. Earth-Science Reviews 234:104215

doi: 10.1016/j.earscirev.2022.104215
[157]

Sun Y, Wang X, Yang C, Xin X, Zheng J, et al. 2024. Effects of biochar on gaseous carbon and nitrogen emissions in paddy fields: a review. Agronomy 14:1461

doi: 10.3390/agronomy14071461
[158]

Wang N, Chang ZZ, Xue XM, Yu JG, Shi XX, et al. 2017. Biochar decreases nitrogen oxide and enhances methane emissions via altering microbial community composition of anaerobic paddy soil. The Science of the Total Environment 581−582:689−696

doi: 10.1016/j.scitotenv.2016.12.181
[159]

Zhang J, Ge X, Qiu X, Liu L, Mulder J, Duan L. 2024. Estimation of carbon sequestration potential and air quality impacts of biochar production from straw in China. Environmental Pollution 363:125304

doi: 10.1016/j.envpol.2024.125304
[160]

Xu D, Cao J, Li Y, Howard A, Yu K. 2019. Effect of pyrolysis temperature on characteristics of biochars derived from different feedstocks: a case study on ammonium adsorption capacity. Waste Management 87:652−660

doi: 10.1016/j.wasman.2019.02.049
[161]

Mohamed BA, Ruan R, Bilal M, Khan NA, Awasthi MK, et al. 2023. Co-pyrolysis of sewage sludge and biomass for stabilizing heavy metals and reducing biochar toxicity: a review. Environmental Chemistry Letters 21:1231−1250

doi: 10.1007/s10311-022-01542-6
[162]

Nakić D, Posavčić H, Licht K, Vouk D. 2025. Application of novel biochar derived from experimental sewage sludge gasification as an adsorbent for heavy metals removal. Sustainability 17:997

doi: 10.3390/su17030997
[163]

Ganesan A, Rezazgui O, Langlois S, Boussabbeh C, Barnabé S. 2025. Pyrolytic conversion of construction, renovation, and demolition (CRD) wood wastes in Québec to biochar: production, characterization, and identifying relevant stability indices for carbon sequestration. Science of the Total Environment 965:178650

doi: 10.1016/j.scitotenv.2025.178650
[164]

Kubaczyński A, Walkiewicz A, Pytlak A, Grządziel J, Gałązka A, Brzezińska M. 2022. Biochar dose determines methane uptake and methanotroph abundance in Haplic Luvisol. Science of the Total Environment 806:151259

doi: 10.1016/j.scitotenv.2021.151259
[165]

Li X, Shimizu N. 2023. Biochar-promoted methane production and mitigation of acidification during thermophilic anaerobic co-digestion of food waste with crude glycerol: comparison with re-inoculation. Sustainable Environment Research 33:4

doi: 10.1186/s42834-023-00167-w
[166]

Shi S, Ochedi FO, Yu J, Liu Y. 2021. Porous biochars derived from microalgae pyrolysis for CO2 adsorption. Energy & Fuels 35:7646−7656

doi: 10.1021/acs.energyfuels.0c04091
[167]

Mondal AK, Hinkley C, Krishnan L, Ravi N, Akter F, et al. 2024. Macroalgae-based biochar: Preparation and characterization of physicochemical properties for potential applications. RSC Sustainability 2:1828−1836

doi: 10.1039/D4SU00008K
[168]

Agyarko-Mintah E, Cowie A, Singh BP, Joseph S, Van Zwieten L, et al. 2017. Biochar increases nitrogen retention and lowers greenhouse gas emissions when added to composting poultry litter. Waste Management 61:138−149

doi: 10.1016/j.wasman.2016.11.027
[169]

Keskinen R, Hyväluoma J, Sohlo L, Help H, Rasa K. 2019. Fertilizer and soil conditioner value of broiler manure biochars. Biochar 1:259−270

doi: 10.1007/s42773-019-00020-7
[170]

Lefebvre D, Fawzy S, Aquije CA, Osman AI, Draper KT, et al. 2023. Biomass residue to carbon dioxide removal: quantifying the global impact of biochar. Biochar 5:65

doi: 10.1007/s42773-023-00258-2
[171]

Xia F, Zhang Z, Zhang Q, Huang H, Zhao X. 2024. Life cycle assessment of greenhouse gas emissions for various feedstocks-based biochars as soil amendment. The Science of the Total Environment 911:168734

doi: 10.1016/j.scitotenv.2023.168734
[172]

He D, Ma H, Hu D, Wang X, Dong Z, et al. 2024. Biochar for sustainable agriculture: Improved soil carbon storage and reduced emissions on cropland. Journal of Environmental Management 371:123147

doi: 10.1016/j.jenvman.2024.123147
[173]

Liu X, Lu D, Zhang A, Liu Q, Jiang G. 2022. Data-driven machine learning in environmental pollution: gains and problems. Environmental Science & Technology 56:2124−2133

doi: 10.1021/acs.est.1c06157
[174]

Zhang C, Felix CB, Chen WH, Zhang Y. 2024. Supervised and unsupervised machine learning for elemental changes evaluation of torrefied biochars. Energy 312:133672

doi: 10.1016/j.energy.2024.133672
[175]

Hai A, Bharath G, Patah MFA, Daud WMAW, K R, et al. 2023. Machine learning models for the prediction of total yield and specific surface area of biochar derived from agricultural biomass by pyrolysis. Environmental Technology & Innovation 30:103071

doi: 10.1016/j.eti.2023.103071
[176]

Nguyen VG, Sharma P, Ağbulut Ü, Le HS, Truong TH, et al. 2024. Machine learning for the management of biochar yield and properties of biomass sources for sustainable energy. Biofuels, Bioproducts and Biorefining 18:567−593

doi: 10.1002/bbb.2596
[177]

Okolie JA, Savage S, Ogbaga CC, Gunes B. 2022. Assessing the potential of machine learning methods to study the removal of pharmaceuticals from wastewater using biochar or activated carbon. Total Environment Research Themes 1−2:100001

doi: 10.1016/j.totert.2022.100001
[178]

Wei X, Liu Y, Shen L, Lu Z, Ai Y, et al. 2024. Machine learning insights in predicting heavy metals interaction with biochar. Biochar 6:10

doi: 10.1007/s42773-024-00304-7
[179]

Song Y, Huang Z, Jin M, Liu Z, Wang X, et al. 2024. Machine learning prediction of biochar physicochemical properties based on biomass characteristics and pyrolysis conditions. Journal of Analytical and Applied Pyrolysis 181:106596

doi: 10.1016/j.jaap.2024.106596
[180]

Li Y, Gupta R, You S. 2022. Machine learning assisted prediction of biochar yield and composition via pyrolysis of biomass. Bioresource Technology 359:127511

doi: 10.1016/j.biortech.2022.127511
[181]

Kandpal S, Tagade A, Sawarkar AN. 2024. Critical insights into ensemble learning with decision trees for the prediction of biochar yield and higher heating value from pyrolysis of biomass. Bioresource Technology 411:131321

doi: 10.1016/j.biortech.2024.131321
[182]

Hassan R, Behtouei Z, Baghban A. 2025. Advanced machine learning for precise prediction of biochar's heavy metal sorption efficiency. Journal of Hazardous Materials Advances 18:100739

doi: 10.1016/j.hazadv.2025.100739
[183]

Cao H, Xin Y, Yuan Q. 2016. Prediction of biochar yield from cattle manure pyrolysis via least squares support vector machine intelligent approach. Bioresource Technology 202:158−164

doi: 10.1016/j.biortech.2015.12.024
[184]

Bong HK, Selvarajoo A, Arumugasamy SK. 2022. Stability of biochar derived from banana peel through pyrolysis as alternative source of nutrient in soil: feedforward neural network modelling study. Environmental Monitoring and Assessment 194:70

doi: 10.1007/s10661-021-09691-x
[185]

Wang Y, Xu L, Li J, Ren Z, Liu W, et al. 2024. Multi-output neural network model for predicting biochar yield and composition. Science of the Total Environment 945:173942

doi: 10.1016/j.scitotenv.2024.173942
[186]

Xie H, Zhou X, Zhang Y, Yan W. 2025. Prediction of biochar characteristics and optimization of pyrolysis process by response surface methodology combined with artificial neural network. Biomass Conversion and Biorefinery 15:4745−4757

doi: 10.1007/s13399-023-05194-6
[187]

Likas A, Vlassis N, Verbeek JJ. 2003. The global k-means clustering algorithm. Pattern Recognition 36:451−461

doi: 10.1016/S0031-3203(02)00060-2
[188]

Celebi ME, Kingravi HA, Vela PA. 2013. A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Systems with Applications 40:200−210

doi: 10.1016/j.eswa.2012.07.021
[189]

Yuan C, Yang H. 2019. Research on K-value selection method of K-means clustering algorithm. J 2:226−235

doi: 10.3390/j2020016
[190]

Paula AJ, Ferreira OP, Souza Filho AG, Filho FN, Andrade CE, et al. 2022. Machine learning and natural language processing enable a data-oriented experimental design approach for producing biochar and hydrochar from biomass. Chemistry of Materials 34:979−990

doi: 10.1021/acs.chemmater.1c02961
[191]

Zhao L, Cao X, Wang Q, Yang F, Xu S. 2013. Mineral constituents profile of biochar derived from diversified waste biomasses: Implications for agricultural applications. Journal of Environmental Quality 42:545−552

doi: 10.2134/jeq2012.0232
[192]

Dai Z, Li R, Muhammad N, Brookes PC, Wang H, et al. 2014. Principle component and hierarchical cluster analysis of soil properties following biochar incorporation. Soil Science Society of America Journal 78:205−213

doi: 10.2136/sssaj2013.05.0199
[193]

Clemente JS, Beauchemin S, Thibault Y, MacKinnon T, Smith D. 2018. Differentiating inorganics in biochars produced at commercial scale using principal component analysis. ACS Omega 3:6931−6944

doi: 10.1021/acsomega.8b00523
[194]

Beattie JR, Esmonde-White FWL. 2021. Exploration of principal component analysis: Deriving principal component analysis visually using spectra. Applied Spectroscopy 75:361−375

doi: 10.1177/0003702820987847
[195]

Liu J, Kang H, Tao W, Li H, He D, et al. 2023. A spatial distribution – principal component analysis (SD-PCA) model to assess pollution of heavy metals in soil. Science of the Total Environment 859:160112

doi: 10.1016/j.scitotenv.2022.160112
[196]

Garnier P, Viquerat J, Rabault J, Larcher A, Kuhnle A, et al. 2021. A review on deep reinforcement learning for fluid mechanics. Computers & Fluids 225:104973

doi: 10.1016/j.compfluid.2021.104973
[197]

Ladosz P, Weng L, Kim M, Oh H. 2022. Exploration in deep reinforcement learning: a survey. Information Fusion 85:1−22

doi: 10.1016/j.inffus.2022.03.003
[198]

Ahmed SF, Alam MSB, Hassan M, Rozbu MR, Ishtiak T, et al. 2023. Deep learning modelling techniques: current progress, applications, advantages, and challenges. Artificial Intelligence Review 56:13521−13617

doi: 10.1007/s10462-023-10466-8
[199]

Faridi IK, Tsotsas E, Kharaghani A. 2024. Advancing process control in fluidized bed biomass gasification using model-based deep reinforcement learning. Processes 12:254

doi: 10.3390/pr12020254
[200]

Canese L, Cardarilli GC, Di Nunzio L, Fazzolari R, Giardino D, et al. 2021. Multi-agent reinforcement learning: a review of challenges and applications. Applied Sciences 11:4948

doi: 10.3390/app11114948
[201]

Krzywanski J, Sosnowski M, Grabowska K, Zylka A, Lasek L, et al. 2024. Advanced computational methods for modeling, prediction and optimization—a review. Materials 17:3521

doi: 10.3390/ma17143521
[202]

Hu K, Li M, Song Z, Xu K, Xia Q, et al. 2024. A review of research on reinforcement learning algorithms for multi-agents. Neurocomputing 599:128068

doi: 10.1016/j.neucom.2024.128068
[203]

Li Y, Gupta R, Li W, Fang Y, Toney J, et al. 2025. Machine learning-assisted life cycle assessment of biochar soil application. Journal of Cleaner Production 498:145109

doi: 10.1016/j.jclepro.2025.145109
[204]

Cheng F, Luo H, Colosi LM. 2020. Slow pyrolysis as a platform for negative emissions technology: An integration of machine learning models, life cycle assessment, and economic analysis. Energy Conversion and Management 223:113258

doi: 10.1016/j.enconman.2020.113258
[205]

Ozcan A, Kasif A, Sezgin IV, Catal C, Sanwal M, et al. 2024. Deep learning-based modelling of pyrolysis. Cluster Computing 27:1089−1108

doi: 10.1007/s10586-023-04096-6
[206]

Akinpelu DA, Adekoya OA, Oladoye PO, Ogbaga CC, Okolie JA. 2023. Machine learning applications in biomass pyrolysis: From biorefinery to end-of-life product management. Digital Chemical Engineering 8:100103

doi: 10.1016/j.dche.2023.100103
[207]

Chen Y, Zou Z, Jin X, Wang J, Tan K. 2024. Biochar-enhanced concrete mixes: Pioneering multi-objective optimization. Journal of Building Engineering 88:109263

doi: 10.1016/j.jobe.2024.109263
[208]

Dashti A, Raji M, Riasat Harami H, Zhou JL, Asghari M. 2023. Biochar performance evaluation for heavy metals removal from industrial wastewater based on machine learning: application for environmental protection. Separation and Purification Technology 312:123399

doi: 10.1016/j.seppur.2023.123399
[209]

Chen C, Liang R, Wang J, Ge Y, Tao J, et al. 2024. Simulation and optimization of co-pyrolysis biochar using data enhanced interpretable machine learning and particle swarm algorithm. Biomass and Bioenergy 182:107111

doi: 10.1016/j.biombioe.2024.107111
[210]

Supraja KV, Kachroo H, Viswanathan G, Verma VK, Behera B, et al. 2023. Biochar production and its environmental applications: recent developments and machine learning insights. Bioresource Technology 387:129634

doi: 10.1016/j.biortech.2023.129634
[211]

Shi H, Zhang L, Pan D, Wang G. 2024. Deep reinforcement learning-based process control in biodiesel production. Processes 12:2885

doi: 10.3390/pr12122885
[212]

Heidenreich JN, Gorji MB, Mohr D. 2023. Modeling structure-property relationships with convolutional neural networks: yield surface prediction based on microstructure images. International Journal of Plasticity 163:103506

doi: 10.1016/j.ijplas.2022.103506
[213]

Chen C, Hu Y, Ge Y, Tao J, Yan B, et al. 2025. Integrated learning framework for enhanced specific surface area, pore size, and pore volume prediction of biochar. Bioresource Technology 424:132279

doi: 10.1016/j.biortech.2025.132279
[214]

Khan M, Ullah Z, Mašek O, Raza Naqvi S, Nouman Aslam Khan M. 2022. Artificial neural networks for the prediction of biochar yield: a comparative study of metaheuristic algorithms. Bioresource Technology 355:127215

doi: 10.1016/j.biortech.2022.127215
[215]

Yin M, Zhang X, Li F, Yan X, Zhou X, et al. 2024. Multitask deep learning enabling a synergy for cadmium and methane mitigation with biochar amendments in paddy soils. Environmental Science & Technology 58:1771−1782

doi: 10.1021/acs.est.3c07568
[216]

Leng L, Zheng H, Shen T, Wu Z, Xiong T, et al. 2025. Engineering biochar from biomass pyrolysis for effective adsorption of heavy metal: an innovative machine learning approach. Separation and Purification Technology 361:131592

doi: 10.1016/j.seppur.2025.131592
[217]

Cahyana D, Jang HJ. 2025. Addressing data handling shortcomings in machine learning studies on biochar for heavy metal remediation. Journal of Hazardous Materials 491:137887

doi: 10.1016/j.jhazmat.2025.137887
[218]

Mahdi Z, Hanandeh AE, Pratt C. 2025. Nonlinear modeling and machine learning techniques are needed for accurate prediction of contaminant sorption. International Journal of Environmental Science and Technology 22:10103−10127

doi: 10.1007/s13762-024-06280-6
[219]

Pascarella AE, Coppola A, Marrone S, Chirone R, Sansone C, et al. 2025. Critical assessment of machine learning prediction of biomass pyrolysis. Fuel 394:135000

doi: 10.1016/j.fuel.2025.135000
[220]

Hao P, Fu H, Ma S, Xue W, Xiong S, et al. 2025. MgO-embedded S-doped porous biochar composites for efficient removal Cd(II) and Pb(II) in water: DFT studies and mechanistic insights. Separation and Purification Technology 363:132079

doi: 10.1016/j.seppur.2025.132079
[221]

Huang Q, Zhang Q, Zhao S, Zhang C, Guan H, et al. 2025. Efficient recovery of rare metal lanthanum from water by MOF-modified biochar: DFT calculation and dynamic adsorption. Biochar 7:29

doi: 10.1007/s42773-024-00419-x
[222]

Li H, Tang M, Wang L, Liu Q, Yao F, et al. 2024. Molecular simulation combined with DFT calculation guided heteroatom-doped biochar rational design for highly selective and efficient CO2 capture. Chemical Engineering Journal 481:148362

doi: 10.1016/j.cej.2023.148362
[223]

Zhang Y, Yan J, Ren Z, Lu C, Xie H. 2025. Molecular dynamics simulation of thermal properties and morphological stability of biochar-based composite phase change materials. International Journal of Heat and Mass Transfer 251:127354

doi: 10.1016/j.ijheatmasstransfer.2025.127354